About the Project

generalized precision

AdvancedHelp

(0.002 seconds)

11—20 of 49 matching pages

11: Bibliography N
  • NAG (commercial C and Fortran libraries) Numerical Algorithms Group, Ltd..
  • Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
  • 12: Bibliography W
  • T. Watanabe, M. Natori, and T. Oguni (Eds.) (1994) Mathematical Software for the P.C. and Work Stations – A Collection of Fortran 77 Programs. North-Holland Publishing Co., Amsterdam.
  • 13: Bibliography I
    14: Bibliography M
  • Maple (commercial interactive system) Maplesoft.
  • Mathematica (commercial interactive system) Wolfram Research, Inc..
  • Matlab (commercial interactive system) The MathWorks, Inc..
  • 15: Bibliography B
  • P. G. Burke (1970) A program to calculate a general recoupling coefficient. Comput. Phys. Comm. 1 (4), pp. 241–250.
  • 16: Bibliography G
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • GSL (free C library) GNU Scientific Library The GNU Project.
  • 17: Bibliography K
  • D. K. Kahaner, C. Moler, and S. Nash (1989) Numerical Methods and Software. Prentice Hall, Englewood Cliffs, N.J..
  • R. P. Kanwal (1983) Generalized functions. Mathematics in Science and Engineering, Vol. 171, Academic Press, Inc., Orlando, FL.
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • C. Kormanyos (2011) Algorithm 910: a portable C++ multiple-precision system for special-function calculations. ACM Trans. Math. Software 37 (4), pp. Art. 45, 27.
  • P. Kravanja, O. Ragos, M. N. Vrahatis, and F. A. Zafiropoulos (1998) ZEBEC: A mathematical software package for computing simple zeros of Bessel functions of real order and complex argument. Comput. Phys. Comm. 113 (2-3), pp. 220–238.
  • 18: 1.15 Summability Methods
    General Cesàro Summability
    19: 19.15 Advantages of Symmetry
    Symmetry allows the expansion (19.19.7) in a series of elementary symmetric functions that gives high precision with relatively few terms and provides the most efficient method of computing the incomplete integral of the third kind (§19.36(i)). Symmetry makes possible the reduction theorems of §19.29(i), permitting remarkable compression of tables of integrals while generalizing the interval of integration. …
    20: Bibliography S
  • SLATEC (free Fortran library)