About the Project

expansions in Bessel functions

AdvancedHelp

(0.027 seconds)

21—30 of 100 matching pages

21: 10.72 Mathematical Applications
Bessel functions and modified Bessel functions are often used as approximants in the construction of uniform asymptotic approximations and expansions for solutions of linear second-order differential equations containing a parameter. … In regions in which (10.72.1) has a simple turning point z 0 , that is, f ( z ) and g ( z ) are analytic (or with weaker conditions if z = x is a real variable) and z 0 is a simple zero of f ( z ) , asymptotic expansions of the solutions w for large u can be constructed in terms of Airy functions or equivalently Bessel functions or modified Bessel functions of order 1 3 9.6(i)). … If f ( z ) has a double zero z 0 , or more generally z 0 is a zero of order m , m = 2 , 3 , 4 , , then uniform asymptotic approximations (but not expansions) can be constructed in terms of Bessel functions, or modified Bessel functions, of order 1 / ( m + 2 ) . … In regions in which the function f ( z ) has a simple pole at z = z 0 and ( z z 0 ) 2 g ( z ) is analytic at z = z 0 (the case λ = 1 in §10.72(i)), asymptotic expansions of the solutions w of (10.72.1) for large u can be constructed in terms of Bessel functions and modified Bessel functions of order ± 1 + 4 ρ , where ρ is the limiting value of ( z z 0 ) 2 g ( z ) as z z 0 . …
22: 30.9 Asymptotic Approximations and Expansions
For uniform asymptotic expansions in terms of Airy or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1986). … For uniform asymptotic expansions in terms of elementary, Airy, or Bessel functions for real values of the parameters, complex values of the variable, and with explicit error bounds see Dunster (1992, 1995). …
23: 11.10 Anger–Weber Functions
§11.10(viii) Expansions in Series of Products of Bessel Functions
24: 10.41 Asymptotic Expansions for Large Order
25: 18.15 Asymptotic Approximations
The latter expansions are in terms of Bessel functions, and are uniform in complex z -domains not containing neighborhoods of 1. … These expansions are in terms of Bessel functions and modified Bessel functions, respectively. …
26: 10.74 Methods of Computation
The power-series expansions given in §§10.2 and 10.8, together with the connection formulas of §10.4, can be used to compute the Bessel and Hankel functions when the argument x or z is sufficiently small in absolute value. … In the case of the spherical Bessel functions the explicit formulas given in §§10.49(i) and 10.49(ii) are terminating cases of the asymptotic expansions given in §§10.17(i) and 10.40(i) for the Bessel functions and modified Bessel functions. …
27: 10.40 Asymptotic Expansions for Large Argument
§10.40 Asymptotic Expansions for Large Argument
§10.40(i) Hankel’s Expansions
Products
§10.40(iv) Exponentially-Improved Expansions
28: Bibliography L
  • Y. L. Luke (1959) Expansion of the confluent hypergeometric function in series of Bessel functions. Math. Tables Aids Comput. 13 (68), pp. 261–271.
  • 29: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
    For asymptotic expansions of ϕ ( ρ , β ; z ) as z in various sectors of the complex z -plane for fixed real values of ρ and fixed real or complex values of β , see Wright (1935) when ρ > 0 , and Wright (1940b) when 1 < ρ < 0 . …
    30: 6.18 Methods of Computation
    For small or moderate values of x and | z | , the expansion in power series (§6.6) or in series of spherical Bessel functions6.10(ii)) can be used. …