About the Project

expansions%20in%20doubly-infinite%20partial%20fractions

AdvancedHelp

(0.004 seconds)

11—20 of 938 matching pages

11: 28.16 Asymptotic Expansions for Large q
§28.16 Asymptotic Expansions for Large q
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
12: 6.16 Mathematical Applications
The n th partial sum is given by …uniformly for x [ π , π ] . … Compare Figure 6.16.1. … It occurs with Fourier-series expansions of all piecewise continuous functions. … …
13: 25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Luke (1969b, p. 306) gives coefficients in Chebyshev-series expansions that cover ζ ( s ) for 0 s 1 (15D), ζ ( s + 1 ) for 0 s 1 (20D), and ln ξ ( 1 2 + i x ) 25.4) for 1 x 1 (20D). For errata see Piessens and Branders (1972).

  • 14: 8 Incomplete Gamma and Related
    Functions
    15: 28 Mathieu Functions and Hill’s Equation
    16: 25.12 Polylogarithms
    The notation Li 2 ( z ) was introduced in Lewin (1981) for a function discussed in Euler (1768) and called the dilogarithm in Hill (1828): … The remainder of the equations in this subsection apply to principal branches. … The cosine series in (25.12.7) has the elementary sum … For real or complex s and z the polylogarithm Li s ( z ) is defined by … (In the latter case (25.12.11) becomes (25.5.1)). …
    17: Gergő Nemes
     1988 in Szeged, Hungary) is a Research Fellow at the Alfréd Rényi Institute of Mathematics in Budapest, Hungary. …  in mathematics (with distinction) and a M. …in mathematics (with honours) from Loránd Eötvös University, Budapest, Hungary and a Ph. … in mathematics from Central European University in Budapest, Hungary. … As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    18: 16.22 Asymptotic Expansions
    §16.22 Asymptotic Expansions
    Asymptotic expansions of G p , q m , n ( z ; 𝐚 ; 𝐛 ) for large z are given in Luke (1969a, §§5.7 and 5.10) and Luke (1975, §5.9). For asymptotic expansions of Meijer G -functions with large parameters see Fields (1973, 1983).
    19: 23 Weierstrass Elliptic and Modular
    Functions
    20: Wolter Groenevelt
     1976 in Leidschendam, the Netherlands) is an Associate Professor at the Delft University of Technology in Delft, The Netherlands. …  in mathematics at the Delft University of Technology in 2004. Groenevelt’s research interests is in special functions and orthogonal polynomials and their relations with representation theory and interacting particle systems. As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. In July 2023, Groenevelt was named Contributing Developer of the NIST Digital Library of Mathematical Functions.