About the Project

elliptic integrals

AdvancedHelp

(0.014 seconds)

31—40 of 132 matching pages

31: 19.11 Addition Theorems
§19.11 Addition Theorems
§19.11(iii) Duplication Formulas
19.11.12 F ( ψ , k ) = 2 F ( θ , k ) ,
32: 22.16 Related Functions
In Equations (22.16.21)–(22.16.23), K < x < K . In Equations (22.16.24)–(22.16.26), 2 K < x < 2 K . … For E ( k ) see §19.2(ii). … For E ( k ) see §19.2(ii).
Relation to the Elliptic Integral E ( ϕ , k )
33: 19.8 Quadratic Transformations
K ( k ) = ( 1 + k 1 ) K ( k 1 ) ,
E ( k ) = ( 1 + k ) E ( k 1 ) k K ( k ) .
F ( ϕ , k ) = 1 2 ( 1 + k 1 ) F ( ϕ 1 , k 1 ) ,
F ( ϕ , k ) = 2 1 + k F ( ϕ 2 , k 2 ) ,
F ( ϕ , k ) = ( 1 + k 1 ) F ( ψ 1 , k 1 ) ,
34: 29.2 Differential Equations
This equation has regular singularities at the points 2 p K + ( 2 q + 1 ) i K , where p , q , and K , K are the complete elliptic integrals of the first kind with moduli k , k ( = ( 1 k 2 ) 1 / 2 ) , respectively; see §19.2(ii). …
29.2.8 η = ( e 1 e 3 ) 1 / 2 ( z i K ) ,
35: 29.18 Mathematical Applications
β = K + i β ,
0 β 2 K ,
0 γ 4 K ,
α = K + i K α , 0 α < K ,
β = K + i β , 0 β 2 K , 0 γ 4 K ,
36: 22.14 Integrals
Thirdly, with K < x < K , … Lastly, with 0 < x < 2 K , … In (22.14.13)–(22.14.15), 0 < x < 2 K . …
22.14.16 0 K ( k ) ln ( sn ( t , k ) ) d t = π 4 K ( k ) 1 2 K ( k ) ln k ,
22.14.17 0 K ( k ) ln ( cn ( t , k ) ) d t = π 4 K ( k ) + 1 2 K ( k ) ln ( k / k ) ,
37: 29.12 Definitions
The superscript m on the left-hand sides of (29.12.1)–(29.12.8) agrees with the number of z -zeros of each Lamé polynomial in the interval ( 0 , K ) , while n m is the number of z -zeros in the open line segment from K to K + i K . …
Table 29.12.1: Lamé polynomials.
ν
eigenvalue
h
eigenfunction
w ( z )
polynomial
form
real
period
imag.
period
parity of
w ( z )
parity of
w ( z K )
parity of
w ( z K i K )
2 n a ν 2 m ( k 2 ) 𝑢𝐸 ν m ( z , k 2 ) P ( sn 2 ) 2 K 2 i K even even even
2 n + 2 b ν 2 m + 2 ( k 2 ) 𝑠𝑐𝐸 ν m ( z , k 2 ) sn cn P ( sn 2 ) 2 K 4 i K odd odd even
2 n + 3 b ν 2 m + 2 ( k 2 ) 𝑠𝑐𝑑𝐸 ν m ( z , k 2 ) sn cn dn P ( sn 2 ) 2 K 2 i K odd odd odd
38: 29.8 Integral Equations
Let w ( z ) be any solution of (29.2.1) of period 4 K , w 2 ( z ) be a linearly independent solution, and 𝒲 { w , w 2 } denote their Wronskian. …
29.8.2 μ w ( z 1 ) w ( z 2 ) w ( z 3 ) = 2 K 2 K 𝖯 ν ( x ) w ( z ) d z ,
w ( z + 2 K ) = σ w ( z ) ,
w 2 ( z + 2 K ) = τ w ( z ) + σ w 2 ( z ) .
29.8.7 𝐸𝑐 ν 2 m + 1 ( z 1 , k 2 ) w 2 ( K ) + w 2 ( K ) w 2 ( 0 ) = k 2 sn ( z 1 , k ) K K sn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) d z ,
39: 36.1 Special Notation
The main functions covered in this chapter are cuspoid catastrophes Φ K ( t ; 𝐱 ) ; umbilic catastrophes with codimension three Φ ( E ) ( s , t ; 𝐱 ) , Φ ( H ) ( s , t ; 𝐱 ) ; canonical integrals Ψ K ( 𝐱 ) , Ψ ( E ) ( 𝐱 ) , Ψ ( H ) ( 𝐱 ) ; diffraction catastrophes Ψ K ( 𝐱 ; k ) , Ψ ( E ) ( 𝐱 ; k ) , Ψ ( H ) ( 𝐱 ; k ) generated by the catastrophes. …
40: 22.18 Mathematical Applications
where k = 1 ( b 2 / a 2 ) is the eccentricity, and 0 u 4 K ( k ) . … With k [ 0 , 1 ] the mapping z w = sn ( z , k ) gives a conformal map of the closed rectangle [ K , K ] × [ 0 , K ] onto the half-plane w 0 , with 0 , ± K , ± K + i K , i K mapping to 0 , ± 1 , ± k 2 , respectively. The half-open rectangle ( K , K ) × [ K , K ] maps onto cut along the intervals ( , 1 ] and [ 1 , ) . …