About the Project

elementary properties

AdvancedHelp

(0.001 seconds)

21—27 of 27 matching pages

21: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • S. M. Markov (1981) On the interval computation of elementary functions. C. R. Acad. Bulgare Sci. 34 (3), pp. 319–322.
  • X. Merrheim (1994) The computation of elementary functions in radix 2 p . Computing 53 (3-4), pp. 219–232.
  • S. C. Milne (1985b) An elementary proof of the Macdonald identities for A l ( 1 ) . Adv. in Math. 57 (1), pp. 34–70.
  • J. Muller (1997) Elementary Functions: Algorithms and Implementation. Birkhäuser Boston Inc., Boston, MA.
  • 22: 19.16 Definitions
    Just as the elementary function R C ( x , y ) 19.2(iv)) is the degenerate case … The R -function is often used to make a unified statement of a property of several elliptic integrals. …
    23: Bibliography B
  • R. W. Barnard, K. Pearce, and K. C. Richards (2000) A monotonicity property involving F 2 3 and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32 (2), pp. 403–419.
  • T. Bountis, H. Segur, and F. Vivaldi (1982) Integrable Hamiltonian systems and the Painlevé property. Phys. Rev. A (3) 25 (3), pp. 1257–1264.
  • R. P. Brent (1976) Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach. 23 (2), pp. 242–251.
  • V. Britanak, P. C. Yip, and K. R. Rao (2007) Discrete Cosine and Sine Transforms. General Properties, Fast Algorithms and Integer Approximations. Elsevier/Academic Press, Amsterdam.
  • 24: 2.11 Remainder Terms; Stokes Phenomenon
    Two different asymptotic expansions in terms of elementary functions, (2.11.6) and (2.11.7), are available for the generalized exponential integral in the sector 1 2 π < ph z < 3 2 π . … However, to enjoy the resurgence property2.7(ii)) we often seek instead expansions in terms of the F -functions introduced in §2.11(iii), leaving the connection of the error-function type behavior as an implicit consequence of this property of the F -functions. …
    25: 2.8 Differential Equations with a Parameter
    These are elementary functions in Case I, and Airy functions (§9.2) in Case II. … Corresponding to each positive integer n there are solutions W n , j ( u , ξ ) , j = 1 , 2 , that depend on arbitrarily chosen reference points α j , are C or analytic on 𝚫 , and as u This reference also supplies sufficient conditions to ensure that the solutions W n , 1 ( u , ξ ) and W n , 2 ( u , ξ ) having the properties (2.8.11) and (2.8.12) are independent of n . …
    26: Bibliography G
  • W. Gautschi (1959b) Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38 (1), pp. 77–81.
  • I. M. Gel’fand and G. E. Shilov (1964) Generalized Functions. Vol. 1: Properties and Operations. Academic Press, New York.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • B. Grammaticos, A. Ramani, and V. Papageorgiou (1991) Do integrable mappings have the Painlevé property?. Phys. Rev. Lett. 67 (14), pp. 1825–1828.
  • P. Groeneboom and D. R. Truax (2000) A monotonicity property of the power function of multivariate tests. Indag. Math. (N.S.) 11 (2), pp. 209–218.
  • 27: Bibliography L
  • A. Laforgia and M. E. Muldoon (1988) Monotonicity properties of zeros of generalized Airy functions. Z. Angew. Math. Phys. 39 (2), pp. 267–271.
  • J. T. Lewis and M. E. Muldoon (1977) Monotonicity and convexity properties of zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 171–178.
  • M. Yu. Loenko (2001) Evaluating elementary functions with guaranteed precision. Programming and Computer Software 27 (2), pp. 101–110.
  • N. A. Lukaševič (1965) Elementary solutions of certain Painlevé equations. Differ. Uravn. 1 (3), pp. 731–735 (Russian).
  • W. Luther (1995) Highly accurate tables for elementary functions. BIT 35 (3), pp. 352–360.