About the Project

double gamma function

AdvancedHelp

(0.006 seconds)

11—20 of 44 matching pages

11: 13.4 Integral Representations
where the contour of integration separates the poles of Γ ( a + t ) from those of Γ ( t ) . … where the contour of integration separates the poles of Γ ( a + t ) Γ ( 1 + a b + t ) from those of Γ ( t ) . …where the contour of integration passes all the poles of Γ ( b 1 + t ) Γ ( t ) on the right-hand side.
12: 31.9 Orthogonality
31.9.2 ζ ( 1 + , 0 + , 1 , 0 ) t γ 1 ( 1 t ) δ 1 ( t a ) ϵ 1 w m ( t ) w k ( t ) d t = δ m , k θ m .
13: 33.5 Limiting Forms for Small ρ , Small | η | , or Large
§33.5(i) Small ρ
§33.5(ii) η = 0
For the functions 𝗃 , 𝗒 , J , Y see §§10.47(ii), 10.2(ii). … where γ is Euler’s constant (§5.2(ii)).
§33.5(iv) Large
14: 16.14 Partial Differential Equations
§16.14(i) Appell Functions
§16.14(ii) Other Functions
In addition to the four Appell functions there are 24 other sums of double series that cannot be expressed as a product of two F 1 2 functions, and which satisfy pairs of linear partial differential equations of the second order. …
16.14.5 G 2 ( α , α ; β , β ; x , y ) = m , n = 0 Γ ( α + m ) Γ ( α + n ) Γ ( β + n m ) Γ ( β + m n ) Γ ( α ) Γ ( α ) Γ ( β ) Γ ( β ) x m y n m ! n ! , | x | < 1 , | y | < 1 ,
16.14.6 G 3 ( α , α ; x , y ) = m , n = 0 Γ ( α + 2 n m ) Γ ( α + 2 m n ) Γ ( α ) Γ ( α ) x m y n m ! n ! , | x | + | y | < 1 4 .
15: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • B. W. Char (1980) On Stieltjes’ continued fraction for the gamma function. Math. Comp. 34 (150), pp. 547–551.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Trans. Math. Software 9 (2), pp. 242–245.
  • W. J. Cody (1993b) Algorithm 715: SPECFUN – A portable FORTRAN package of special function routines and test drivers. ACM Trans. Math. Software 19 (1), pp. 22–32.
  • J. P. Coleman (1980) A Fortran subroutine for the Bessel function J n ( x ) of order 0 to 10 . Comput. Phys. Comm. 21 (1), pp. 109–118.
  • 16: 31.10 Integral Equations and Representations
    The weight function is given by … where γ > 0 , δ > 0 , and C be the Pochhammer double-loop contour about 0 and 1 (as in §31.9(i)). Then the integral equation (31.10.1) is satisfied by w ( z ) = w m ( z ) and W ( z ) = κ m w m ( z ) , where w m ( z ) = ( 0 , 1 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) and κ m is the corresponding eigenvalue. … Fuchs–Frobenius solutions W m ( z ) = κ ~ m z α H ( 1 / a , q m ; α , α γ + 1 , α β + 1 , δ ; 1 / z ) are represented in terms of Heun functions w m ( z ) = ( 0 , 1 ) 𝐻𝑓 m ( a , q m ; α , β , γ , δ ; z ) by (31.10.1) with W ( z ) = W m ( z ) , w ( z ) = w m ( z ) , and with kernel chosen from … The weight function is …
    17: Bibliography S
  • M. J. Seaton (1982) Coulomb functions analytic in the energy. Comput. Phys. Comm. 25 (1), pp. 87–95.
  • J. Segura and A. Gil (1998) Parabolic cylinder functions of integer and half-integer orders for nonnegative arguments. Comput. Phys. Comm. 115 (1), pp. 69–86.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • R. Spira (1971) Calculation of the gamma function by Stirling’s formula. Math. Comp. 25 (114), pp. 317–322.
  • I. A. Stegun and R. Zucker (1974) Automatic computing methods for special functions. II. The exponential integral E n ( x ) . J. Res. Nat. Bur. Standards Sect. B 78B, pp. 199–216.
  • 18: Guide to Searching the DLMF
  • phrase:

    any double-quoted sequence of textual words and numbers.

  • DLMF search is generally case-insensitive except when it is important to be case-sensitive, as when two different special functions have the same standard names but one name has a lower-case initial and the other is has an upper-case initial, such as si and Si, gamma and Gamma. …
  • All the Greek Letters (gamma vs. Gamma, sigma vs. Sigma, etc.)

  • All the inverse trigonometric functions (arcsin vs. Arcsin, etc.).

  • For example, you may want equations that contain trigonometric functions, but you don’t care which trigonometric function. …
    19: Bibliography T
  • G. Taubmann (1992) Parabolic cylinder functions U ( n , x ) for natural n and positive x . Comput. Phys. Commun. 69, pp. 415–419.
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1992a) Asymptotic inversion of incomplete gamma functions. Math. Comp. 58 (198), pp. 755–764.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • 20: Bibliography B
  • A. Bañuelos, R. A. Depine, and R. C. Mancini (1981) A program for computing the Fermi-Dirac functions. Comput. Phys. Comm. 21 (3), pp. 315–322.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • J. L. Burchnall and T. W. Chaundy (1940) Expansions of Appell’s double hypergeometric functions. Quart. J. Math., Oxford Ser. 11, pp. 249–270.
  • J. L. Burchnall and T. W. Chaundy (1941) Expansions of Appell’s double hypergeometric functions. II. Quart. J. Math., Oxford Ser. 12, pp. 112–128.