About the Project

diffraction%20of%20light

AdvancedHelp

(0.001 seconds)

11—20 of 120 matching pages

11: Bibliography F
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • V. A. Fock (1965) Electromagnetic Diffraction and Propagation Problems. International Series of Monographs on Electromagnetic Waves, Vol. 1, Pergamon Press, Oxford.
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • C. K. Frederickson and P. L. Marston (1992) Transverse cusp diffraction catastrophes produced by the reflection of ultrasonic tone bursts from a curved surface in water. J. Acoust. Soc. Amer. 92 (5), pp. 2869–2877.
  • A. Fresnel (1818) Mémoire sur la diffraction de la lumière. Mém. de l’Académie des Sciences, pp. 247–382.
  • 12: 36.6 Scaling Relations
    §36.6 Scaling Relations
    Diffraction Catastrophe Scaling
    Ψ K ( 𝐱 ; k ) = k β K Ψ K ( 𝐲 ( k ) ) ,
    Ψ ( U ) ( 𝐱 ; k ) = k β ( U ) Ψ ( U ) ( 𝐲 ( U ) ( k ) ) ,
    13: 11.12 Physical Applications
    Applications of Struve functions occur in water-wave and surface-wave problems (Hirata (1975) and Ahmadi and Widnall (1985)), unsteady aerodynamics (Shaw (1985) and Wehausen and Laitone (1960)), distribution of fluid pressure over a vibrating disk (McLachlan (1934)), resistive MHD instability theory (Paris and Sy (1983)), and optical diffraction (Levine and Schwinger (1948)). …
    14: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • L. Levey and L. B. Felsen (1969) On incomplete Airy functions and their application to diffraction problems. Radio Sci. 4 (10), pp. 959–969.
  • H. Levine and J. Schwinger (1948) On the theory of diffraction by an aperture in an infinite plane screen. I. Phys. Rev. 74 (8), pp. 958–974.
  • J. C. Light and T. Carrington Jr. (2000) Discrete-variable representations and their utilization. In Advances in Chemical Physics, pp. 263–310.
  • 15: Bibliography W
  • J. Walker (1983) Caustics: Mathematical curves generated by light shined through rippled plastic. Scientific American 249, pp. 146–153.
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 16: 8 Incomplete Gamma and Related
    Functions
    17: 28 Mathieu Functions and Hill’s Equation
    18: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 19: 23 Weierstrass Elliptic and Modular
    Functions
    20: 36.14 Other Physical Applications
    Diffraction catastrophes describe the (linear) wave amplitudes that smooth the geometrical caustic singularities and decorate them with interference patterns. … Diffraction catastrophes describe the connection between ray optics and wave optics. … Diffraction catastrophes describe the “semiclassical” connections between classical orbits and quantum wavefunctions, for integrable (non-chaotic) systems. …