About the Project

delta barnes 716 351 621 reservations contact number

AdvancedHelp

(0.002 seconds)

1—10 of 381 matching pages

1: 5.17 Barnes’ G -Function (Double Gamma Function)
§5.17 Barnes G -Function (Double Gamma Function)
G ( 1 ) = 1 ,
5.17.2 G ( n ) = ( n 2 ) ! ( n 3 ) ! 1 ! , n = 2 , 3 , .
When z in | ph z | π δ ( < π ) , …Here B 2 k + 2 is the Bernoulli number24.2(i)), and A is Glaisher’s constant, given by …
2: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
Its coefficients were first studied in Euler (1755); they were called Euler numbers by Raabe in 1851. The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
3: 5.1 Special Notation
j , m , n nonnegative integers.
δ arbitrary small positive constant.
4: 19.11 Addition Theorems
Δ ( θ ) = 1 k 2 sin 2 θ .
δ = α 2 ( 1 α 2 ) ( α 2 k 2 ) .
19.11.6_5 R C ( γ δ , γ ) = 1 δ arctan ( δ sin θ sin ϕ sin ψ α 2 1 α 2 cos θ cos ϕ cos ψ ) .
δ = α 2 ( 1 α 2 ) ( α 2 k 2 ) .
If ϕ = θ in §19.11(i) and Δ ( θ ) is again defined by (19.11.3), then …
5: 31.2 Differential Equations
This equation has regular singularities at 0 , 1 , a , , with corresponding exponents { 0 , 1 γ } , { 0 , 1 δ } , { 0 , 1 ϵ } , { α , β } , respectively (§2.7(i)). … The parameters play different roles: a is the singularity parameter; α , β , γ , δ , ϵ are exponent parameters; q is the accessory parameter. … Next, w ( z ) = ( z 1 ) 1 δ w 2 ( z ) satisfies (31.2.1) if w 2 is a solution of (31.2.1) with transformed parameters q 2 = q + a γ ( 1 δ ) ; α 2 = α + 1 δ , β 2 = β + 1 δ , δ 2 = 2 δ . … For example, if z ~ = z / a , then the parameters are a ~ = 1 / a , q ~ = q / a ; δ ~ = ϵ , ϵ ~ = δ . …For example, w ( z ) = ( 1 z ) α w ~ ( z / ( z 1 ) ) , which arises from z ~ = z / ( z 1 ) , satisfies (31.2.1) if w ~ ( z ~ ) is a solution of (31.2.1) with z replaced by z ~ and transformed parameters a ~ = a / ( a 1 ) , q ~ = ( q a α γ ) / ( a 1 ) ; β ~ = α + 1 δ , δ ~ = α + 1 β . …
6: 14.17 Integrals
§14.17(ii) Barnes’ Integral
14.17.6 1 1 𝖯 l m ( x ) 𝖯 n m ( x ) d x = ( n + m ) ! ( n m ) ! ( n + 1 2 ) δ l , n ,
14.17.7 1 1 𝖯 l m ( x ) 𝖯 n m ( x ) d x = ( 1 ) m l + 1 2 δ l , n ,
14.17.8 1 1 𝖯 n l ( x ) 𝖯 n m ( x ) 1 x 2 d x = ( n + m ) ! ( n m ) ! m δ l , m , m > 0 ,
14.17.9 1 1 𝖯 n l ( x ) 𝖯 n m ( x ) 1 x 2 d x = ( 1 ) l l δ l , m , l > 0 .
7: 13.27 Mathematical Applications
13.27.1 g = ( 1 α β 0 γ δ 0 0 1 ) ,
where α , β , γ , δ are real numbers, and γ > 0 . …
8: 1.17 Integral and Series Representations of the Dirac Delta
§1.17 Integral and Series Representations of the Dirac Delta
§1.17(i) Delta Sequences
Sine and Cosine Functions
Coulomb Functions (§33.14(iv))
Airy Functions (§9.2)
9: 14.16 Zeros
where m , n and δ μ , δ ν ( 0 , 1 ) . … The number of zeros of 𝖯 ν μ ( x ) in the interval ( 1 , 1 ) is max ( ν | μ | , 0 ) if any of the following sets of conditions hold: …
  • (b)

    μ > 0 , n m , and δ ν > δ μ .

  • The number of zeros of 𝖯 ν μ ( x ) in the interval ( 1 , 1 ) is max ( ν | μ | , 0 ) + 1 if either of the following sets of conditions holds:
  • (a)

    μ > 0 , n > m , and δ ν δ μ .

  • 10: 3.9 Acceleration of Convergence
    Here Δ is the forward difference operator: …
    §3.9(iii) Aitken’s Δ 2 -Process
    Shanks’ transformation is a generalization of Aitken’s Δ 2 -process. … Aitken’s Δ 2 -process is the case k = 1 . …