About the Project

critical%20points

AdvancedHelp

(0.001 seconds)

11—20 of 229 matching pages

11: 10.72 Mathematical Applications
§10.72(i) Differential Equations with Turning Points
Simple Turning Points
Multiple or Fractional Turning Points
§10.72(iii) Differential Equations with a Double Pole and a Movable Turning Point
In (10.72.1) assume f ( z ) = f ( z , α ) and g ( z ) = g ( z , α ) depend continuously on a real parameter α , f ( z , α ) has a simple zero z = z 0 ( α ) and a double pole z = 0 , except for a critical value α = a , where z 0 ( a ) = 0 . …
12: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (4), pp. 3–25 (Russian).
  • V. I. Arnol’d (1974) Normal forms of functions in the neighborhood of degenerate critical points. Uspehi Mat. Nauk 29 (2(176)), pp. 11–49 (Russian).
  • V. I. Arnol’d (1975) Critical points of smooth functions, and their normal forms. Uspehi Mat. Nauk 30 (5(185)), pp. 3–65 (Russian).
  • 13: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • M. V. Berry (1977) Focusing and twinkling: Critical exponents from catastrophes in non-Gaussian random short waves. J. Phys. A 10 (12), pp. 2061–2081.
  • J. P. Boyd and A. Natarov (1998) A Sturm-Liouville eigenproblem of the fourth kind: A critical latitude with equatorial trapping. Stud. Appl. Math. 101 (4), pp. 433–455.
  • H. M. Bui, B. Conrey, and M. P. Young (2011) More than 41% of the zeros of the zeta function are on the critical line. Acta Arith. 150 (1), pp. 35–64.
  • T. W. Burkhardt and T. Xue (1991) Density profiles in confined critical systems and conformal invariance. Phys. Rev. Lett. 66 (7), pp. 895–898.
  • 14: 2.4 Contour Integrals
    §2.4(iv) Saddle Points
    §2.4(v) Coalescing Saddle Points: Chester, Friedman, and Ursell’s Method
    §2.4(vi) Other Coalescing Critical Points
    For a coalescing saddle point, a pole, and a branch point see Ciarkowski (1989). For many coalescing saddle points see §36.12. …
    15: 25.17 Physical Applications
    Analogies exist between the distribution of the zeros of ζ ( s ) on the critical line and of semiclassical quantum eigenvalues. … The zeta function arises in the calculation of the partition function of ideal quantum gases (both Bose–Einstein and Fermi–Dirac cases), and it determines the critical gas temperature and density for the Bose–Einstein condensation phase transition in a dilute gas (Lifshitz and Pitaevskiĭ (1980)). …
    16: 36.11 Leading-Order Asymptotics
    With real critical points (36.4.1) ordered so that …
    17: Bibliography V
  • J. van de Lune, H. J. J. te Riele, and D. T. Winter (1986) On the zeros of the Riemann zeta function in the critical strip. IV. Math. Comp. 46 (174), pp. 667–681.
  • B. L. van der Waerden (1951) On the method of saddle points. Appl. Sci. Research B. 2, pp. 33–45.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 18: 25.18 Methods of Computation
    §25.18(ii) Zeros
    Most numerical calculations of the Riemann zeta function are concerned with locating zeros of ζ ( 1 2 + i t ) in an effort to prove or disprove the Riemann hypothesis, which states that all nontrivial zeros of ζ ( s ) lie on the critical line s = 1 2 . Calculations to date (2008) have found no nontrivial zeros off the critical line. …
    19: 20 Theta Functions
    Chapter 20 Theta Functions
    20: 33.3 Graphics
    See accompanying text
    Figure 33.3.3: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 2 . The turning point is at ρ tp ( 2 , 0 ) = 4 . Magnify
    See accompanying text
    Figure 33.3.4: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 10 . The turning point is at ρ tp ( 10 , 0 ) = 20 . Magnify
    See accompanying text
    Figure 33.3.5: F ( η , ρ ) , G ( η , ρ ) , and M ( η , ρ ) with = 0 , η = 15 / 2 . The turning point is at ρ tp ( 15 / 2 , 0 ) = 30 = 5.47 . Magnify
    See accompanying text
    Figure 33.3.6: F ( η , ρ ) , G ( η , ρ ) , and M ( η , ρ ) with = 5 , η = 0 . The turning point is at ρ tp ( 0 , 5 ) = 30 (as in Figure 33.3.5). Magnify