About the Project

connection%20with%20orthogonal%20polynomials%20on%20the%20line

AdvancedHelp

(0.003 seconds)

11—20 of 445 matching pages

11: 18.3 Definitions
§18.3 Definitions
  • 3.

    As given by a Rodrigues formula (18.5.5).

  • Table 18.3.1 provides the traditional definitions of Jacobi, Laguerre, and Hermite polynomials via orthogonality and standardization (§§18.2(i) and 18.2(iii)). … In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) : … For another version of the discrete orthogonality property of the polynomials T n ( x ) see (3.11.9). …
    12: 24.1 Special Notation
    Bernoulli Numbers and Polynomials
    The origin of the notation B n , B n ( x ) , is not clear. …
    Euler Numbers and Polynomials
    The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
    13: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • I. Marquette and C. Quesne (2016) Connection between quantum systems involving the fourth Painlevé transcendent and k -step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57 (5), pp. Paper 052101, 15 pp..
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 11085–11089.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 14: 25.12 Polylogarithms
    25.12.3 Li 2 ( z ) + Li 2 ( z z 1 ) = 1 2 ( ln ( 1 z ) ) 2 , z [ 1 , ) .
    25.12.4 Li 2 ( z ) + Li 2 ( 1 z ) = 1 6 π 2 1 2 ( ln ( z ) ) 2 , z [ 0 , ) .
    25.12.6 Li 2 ( x ) + Li 2 ( 1 x ) = 1 6 π 2 ( ln x ) ln ( 1 x ) , 0 < x < 1 .
    See accompanying text
    Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
    See accompanying text
    Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
    15: Bibliography L
  • V. Laĭ (1994) The two-point connection problem for differential equations of the Heun class. Teoret. Mat. Fiz. 101 (3), pp. 360–368 (Russian).
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • W. Lay and S. Yu. Slavyanov (1998) The central two-point connection problem for the Heun class of ODEs. J. Phys. A 31 (18), pp. 4249–4261.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. Lehner (1941) A partition function connected with the modulus five. Duke Math. J. 8 (4), pp. 631–655.
  • 16: 18.40 Methods of Computation
    §18.40(i) Computation of Polynomials
    Orthogonal polynomials can be computed from their explicit polynomial form by Horner’s scheme (§1.11(i)). …For applications in which the OP’s appear only as terms in series expansions (compare §18.18(i)) the need to compute them can be avoided altogether by use instead of Clenshaw’s algorithm (§3.11(ii)) and its straightforward generalization to OP’s other than Chebyshev. … Having now directly connected computation of the quadrature abscissas and weights to the moments, what follows uses these for a Stieltjes–Perron inversion to regain w ( x ) . … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …
    17: Bibliography W
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • J. A. Wilson (1978) Hypergeometric Series, Recurrence Relations and Some New Orthogonal Polynomials. Ph.D. Thesis, University of Wisconsin, Madison, WI.
  • G. Wolf (1998) On the central connection problem for the double confluent Heun equation. Math. Nachr. 195, pp. 267–276.
  • R. Wong and H. Y. Zhang (2009a) On the connection formulas of the fourth Painlevé transcendent. Anal. Appl. (Singap.) 7 (4), pp. 419–448.
  • R. Wong and H. Y. Zhang (2009b) On the connection formulas of the third Painlevé transcendent. Discrete Contin. Dyn. Syst. 23 (1-2), pp. 541–560.
  • 18: 8 Incomplete Gamma and Related
    Functions
    19: 28 Mathieu Functions and Hill’s Equation
    20: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • P. A. Clarkson and J. B. McLeod (1988) A connection formula for the second Painlevé transcendent. Arch. Rational Mech. Anal. 103 (2), pp. 97–138.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • E. T. Copson (1933) An approximation connected with e x . Proc. Edinburgh Math. Soc. (2) 3, pp. 201–206.