About the Project

coalescing%20saddle%20points

AdvancedHelp

(0.002 seconds)

11—20 of 224 matching pages

11: Bibliography Q
  • W.-Y. Qiu and R. Wong (2000) Uniform asymptotic expansions of a double integral: Coalescence of two stationary points. Proc. Roy. Soc. London Ser. A 456, pp. 407–431.
  • 12: Bibliography L
  • V. Laĭ (1994) The two-point connection problem for differential equations of the Heun class. Teoret. Mat. Fiz. 101 (3), pp. 360–368 (Russian).
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • C. Leubner and H. Ritsch (1986) A note on the uniform asymptotic expansion of integrals with coalescing endpoint and saddle points. J. Phys. A 19 (3), pp. 329–335.
  • J. L. López and P. J. Pagola (2011) A systematic “saddle point near a pole” asymptotic method with application to the Gauss hypergeometric function. Stud. Appl. Math. 127 (1), pp. 24–37.
  • 13: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • M. V. Berry and C. J. Howls (1993) Unfolding the high orders of asymptotic expansions with coalescing saddles: Singularity theory, crossover and duality. Proc. Roy. Soc. London Ser. A 443, pp. 107–126.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 14: 20 Theta Functions
    Chapter 20 Theta Functions
    15: 13.27 Mathematical Applications
    For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i). …
    16: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 17: Bibliography D
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1990b) Uniform asymptotic solutions of second-order linear differential equations having a double pole with complex exponent and a coalescing turning point. SIAM J. Math. Anal. 21 (6), pp. 1594–1618.
  • T. M. Dunster (1994b) Uniform asymptotic solutions of second-order linear differential equations having a simple pole and a coalescing turning point in the complex plane. SIAM J. Math. Anal. 25 (2), pp. 322–353.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • 18: 36.5 Stokes Sets
    where j denotes a real critical point (36.4.1) or (36.4.2), and μ denotes a critical point with complex t or s , t , connected with j by a steepest-descent path (that is, a path where Φ = constant ) in complex t or ( s , t ) space. In the following subsections, only Stokes sets involving at least one real saddle are included unless stated otherwise. … This part of the Stokes set connects two complex saddles. … In Figure 36.5.4 the part of the Stokes surface inside the bifurcation set connects two complex saddles. The distribution of real and complex critical points in Figures 36.5.5 and 36.5.6 follows from consistency with Figure 36.5.1 and the fact that there are four real saddles in the inner regions. …
    19: 31.13 Asymptotic Approximations
    For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). …
    20: 36.13 Kelvin’s Ship-Wave Pattern
    There are two stationary points, given by …These coalesce when … The disturbance z ( ρ , ϕ ) can be approximated by the method of uniform asymptotic approximation for the case of two coalescing stationary points (36.12.11), using the fact that θ ± ( ϕ ) are real for | ϕ | < ϕ c and complex for | ϕ | > ϕ c . …