About the Project

circular cases

AdvancedHelp

(0.001 seconds)

41—50 of 181 matching pages

41: 9.17 Methods of Computation
In the case of Ai ( z ) , for example, this means that in the sectors 1 3 π < | ph z | < π we may integrate along outward rays from the origin with initial values obtained from §9.2(ii). …
42: 10.61 Definitions and Basic Properties
In general, Kelvin functions have a branch point at x = 0 and functions with arguments x e ± π i are complex. The branch point is absent, however, in the case of ber ν and bei ν when ν is an integer. …
ber 1 2 ( x 2 ) = 2 3 4 π x ( e x cos ( x + π 8 ) e x cos ( x π 8 ) ) ,
bei 1 2 ( x 2 ) = 2 3 4 π x ( e x sin ( x + π 8 ) + e x sin ( x π 8 ) ) .
ber 1 2 ( x 2 ) = 2 3 4 π x ( e x sin ( x + π 8 ) e x sin ( x π 8 ) ) ,
43: 8.2 Definitions and Basic Properties
However, when the integration paths do not cross the negative real axis, and in the case of (8.2.2) exclude the origin, γ ( a , z ) and Γ ( a , z ) take their principal values; compare §4.2(i). …
8.2.8 γ ( a , z e 2 π m i ) = e 2 π m i a γ ( a , z ) , a 0 , 1 , 2 , ,
8.2.9 Γ ( a , z e 2 π m i ) = e 2 π m i a Γ ( a , z ) + ( 1 e 2 π m i a ) Γ ( a ) .
For example, in the case m = 1 we have
8.2.10 e π i a Γ ( a , z e π i ) e π i a Γ ( a , z e π i ) = 2 π i Γ ( 1 a ) ,
44: 25.12 Polylogarithms
When z = e i θ , 0 θ 2 π , (25.12.1) becomes … The special case z = 1 is the Riemann zeta function: ζ ( s ) = Li s ( 1 ) . … valid when s > 0 and | ph ( 1 z ) | < π , or s > 1 and z = 1 . (In the latter case (25.12.11) becomes (25.5.1)). … When s = 2 and e 2 π i a = z , (25.12.13) becomes (25.12.4). …
45: 1.12 Continued Fractions
In this case | ph C | 1 2 π . …
46: 4.43 Cubic Equations
4.43.2 z 3 + p z + q = 0
47: 23.12 Asymptotic Approximations
If q ( = e π i ω 3 / ω 1 ) 0 with ω 1 and z fixed, then …
23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) ) ,
23.12.3 σ ( z ) = 2 ω 1 π exp ( π 2 z 2 24 ω 1 2 ) sin ( π z 2 ω 1 ) ( 1 ( π 2 z 2 ω 1 2 4 sin 2 ( π z 2 ω 1 ) ) q 2 + O ( q 4 ) ) ,
provided that z 𝕃 in the case of (23.12.1) and (23.12.2). …
23.12.4 η 1 = π 2 4 ω 1 ( 1 3 8 q 2 + O ( q 4 ) ) ,
48: 15.6 Integral Representations
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.3 𝐅 ( a , b ; c ; z ) = e b π i Γ ( 1 b ) 2 π i Γ ( c b ) ( 0 + ) t b 1 ( t + 1 ) a c ( t z t + 1 ) a d t , | ph ( 1 z ) | < π ; b 1 , 2 , 3 , , ( c b ) > 0 .
In all cases the integrands are continuous functions of t on the integration paths, except possibly at the endpoints. … In (15.6.3) the point 1 / ( z 1 ) lies outside the integration contour, the contour cuts the real axis between t = 1 and 0 , at which point ph t = π and ph ( 1 + t ) = 0 . In (15.6.4) the point 1 / z lies outside the integration contour, and at the point where the contour cuts the negative real axis ph t = π and ph ( 1 t ) = 0 . …
49: 19.17 Graphics
The cases x = 0 or y = 0 correspond to the complete integrals. The case y = 1 corresponds to elementary functions. …
See accompanying text
Figure 19.17.7: Cauchy principal value of R J ( 0.5 , y , 1 , p ) for y = 0 ,  0.01 ,  0.05 ,  0.2 ,  1 , 1 p < 0 . y = 1 corresponds to 3 ( R C ( 0.5 , p ) ( π / 8 ) ) / ( 1 p ) . … Magnify
See accompanying text
Figure 19.17.8: R J ( 0 , y , 1 , p ) , 0 y 1 , 1 p 2 . …If y = 1 , then it has the value 3 2 π / ( p + p ) when p > 0 , and 3 2 π / ( p 1 ) when p < 0 . See (19.20.10), (19.20.11), and (19.20.8) for the cases p 0 ± , y 0 + , and y = 1 , respectively. Magnify 3D Help
50: 18.35 Pollaczek Polynomials
18.35.6 w ( λ ) ( cos θ ; a , b ) = π 1 e ( 2 θ π ) τ a , b ( θ ) ( 2 sin θ ) 2 λ 1 | Γ ( λ + i τ a , b ( θ ) ) | 2 , 0 < θ < π .
18.35.6_1 ln ( w ( λ ) ( cos θ ; a , b ) ) = { 2 π ( a + b ) θ 1 + ( 2 λ 1 ) ln ( a + b ) + λ ln 4 + 2 ( a + b ) + O ( θ ) , θ 0 + , 2 π ( b a ) ( π θ ) 1 + ( 2 λ 1 ) ln ( a b ) + λ ln 4 + 2 ( a b ) + O ( π θ ) , θ π ,
Hence, only in the case a = b = 0 does ln ( w ( λ ) ( x ; a , b ) ) satisfy the condition (18.2.39) for the Szegő class 𝒢 . … More generally, the P n ( λ ) ( x ; a , b ) are OP’s if and only if one of the following three conditions holds (in case (iii) work with the monic polynomials (18.35.2_2)).
18.35.6_2 ( i ) λ > 0  and  a + λ > 0 , ( ii ) 1 2 < λ < 0  and  1 < a + λ < 0 , ( iii ) λ = 0  and  a = b = 0 .