About the Project

central%20differences%20in%20imaginary%20direction

AdvancedHelp

(0.005 seconds)

21—30 of 953 matching pages

21: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Zhang and Jin (1996, pp. 533–535) includes the zeros (in degrees) of ce n ( x , 10 ) , se n ( x , 10 ) for n = 1 ( 1 ) 10 , and the first 5 zeros of Mc n ( j ) ( x , 10 ) , Ms n ( j ) ( x , 10 ) for n = 0 or 1 ( 1 ) 8 , j = 1 , 2 . Precision is mostly 9S.

  • 22: William P. Reinhardt
    He currently resides in Santa Fe, NM. Reinhardt is a theoretical chemist and atomic physicist, who has always been interested in orthogonal polynomials and in the analyticity properties of the functions of mathematical physics. … This is closely connected with his interests in classical dynamical “chaos,” an area where he coauthored a book, Chaos in atomic physics with Reinhold Blümel. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    23: Peter L. Walker
     1942 in Dorchester, U. …He began his academic career in 1964 at the University of Lancaster, U. … Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. … Walker is now retired and living in Cheltenham, UK. …
  • 24: 27.15 Chinese Remainder Theorem
    This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. … Details of a machine program describing the method together with typical numerical results can be found in Newman (1967). …
    25: 36.5 Stokes Sets
    In the following subsections, only Stokes sets involving at least one real saddle are included unless stated otherwise. … The Stokes set takes different forms for z = 0 , z < 0 , and z > 0 . … in which … in which … The distribution of real and complex critical points in Figures 36.5.5 and 36.5.6 follows from consistency with Figure 36.5.1 and the fact that there are four real saddles in the inner regions. …
    26: 18.19 Hahn Class: Definitions
    The Askey scheme extends the three families of classical OP’s (Jacobi, Laguerre and Hermite) with eight further families of OP’s for which the role of the differentiation operator d d x in the case of the classical OP’s is played by a suitable difference operator. These eight further families can be grouped in two classes of OP’s:
  • 1.

    Hahn class (or linear lattice class). These are OP’s p n ( x ) where the role of d d x is played by Δ x or x or δ x (see §18.1(i) for the definition of these operators). The Hahn class consists of four discrete and two continuous families.

  • 2.

    Wilson class (or quadratic lattice class). These are OP’s p n ( x ) = p n ( λ ( y ) ) ( p n ( x ) of degree n in x , λ ( y ) quadratic in y ) where the role of the differentiation operator is played by Δ y Δ y ( λ ( y ) ) or y y ( λ ( y ) ) or δ y δ y ( λ ( y ) ) . The Wilson class consists of two discrete and two continuous families.

  • In addition to the limit relations in §18.7(iii) there are limit relations involving the further families in the Askey scheme, see §§18.21(ii) and 18.26(ii). …
    27: 3.8 Nonlinear Equations
    Results appear in Table 3.8.1. … has n zeros in , counting each zero according to its multiplicity. … Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . … Starting this iteration in the neighborhood of one of the four zeros ± 1 , ± i , sequences { z n } are generated that converge to these zeros. …
    28: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 29: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Kerimov and Skorokhodov (1984c) tabulates all zeros of I n 1 2 ( z ) and I n 1 2 ( z ) in the sector 0 ph z 1 2 π for n = 1 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.

  • 30: 26.10 Integer Partitions: Other Restrictions
    p ( 𝒟 k , n ) denotes the number of partitions of n into parts with difference at least k . p ( 𝒟 3 , n ) denotes the number of partitions of n into parts with difference at least 3, except that multiples of 3 must differ by at least 6. … p ( S , n ) denotes the number of partitions of n into parts taken from the set S . … In exact analogy with (26.9.8), we have … where the inner sum is the sum of all positive divisors of t that are in S . …