# case η=0

(0.006 seconds)

## 1—10 of 128 matching pages

##### 1: 29.11 Lamé Wave Equation
In the case $\omega=0$, (29.11.1) reduces to Lamé’s equation (29.2.1). …
##### 2: 10.70 Zeros
In the case $\nu=0$, numerical tabulations (Abramowitz and Stegun (1964, Table 9.12)) indicate that each of (10.70.2) corresponds to the $m$th zero of the function on the left-hand side. …
##### 5: 14.16 Zeros
In the special case $\mu=0$ and $\nu=n=0,1,2,3,\dots$, $\mathsf{Q}_{n}\left(x\right)$ has $n+1$ zeros in the interval $-1. …
##### 6: 18.1 Notation
They are defined in the literature by $C^{(0)}_{0}\left(x\right)=1$ and …
##### 7: 28.29 Definitions and Basic Properties
The case $c=0$ is equivalent to … The cases $\nu=0$ and $\nu=1$ split into four subcases as in (28.2.21) and (28.2.22). …
##### 8: 32.9 Other Elementary Solutions
In the case $\gamma=0$ and $\alpha\delta\neq 0$ we assume, as in §32.2(ii), $\alpha=1$ and $\delta=-1$. … Dubrovin and Mazzocco (2000) classifies all algebraic solutions for the special case of $\mbox{P}_{\mbox{\scriptsize VI}}$ with $\beta=\gamma=0$, $\delta=\tfrac{1}{2}$. …
##### 9: 18.6 Symmetry, Special Values, and Limits to Monomials
###### Laguerre
18.6.2 $\lim_{\alpha\to\infty}\frac{P^{(\alpha,\beta)}_{n}\left(x\right)}{P^{(\alpha,% \beta)}_{n}\left(1\right)}=\left(\frac{1+x}{2}\right)^{n},$
18.6.4 $\lim_{\lambda\to\infty}\frac{C^{(\lambda)}_{n}\left(x\right)}{C^{(\lambda)}_{n% }\left(1\right)}=x^{n},$
18.6.5 $\lim_{\alpha\to\infty}\frac{L^{(\alpha)}_{n}\left(\alpha x\right)}{L^{(\alpha)% }_{n}\left(0\right)}=(1-x)^{n}.$
##### 10: 19.33 Triaxial Ellipsoids
A conducting elliptic disk is included as the case $c=0$. …