About the Project

binomial coefficients

AdvancedHelp

(0.003 seconds)

11—20 of 66 matching pages

11: 26.17 The Twelvefold Way
Table 26.17.1: The twelvefold way.
elements of N elements of K f unrestricted f one-to-one f onto
unlabeled labeled ( k + n 1 n ) ( k n ) ( n 1 n k )
12: 26.5 Lattice Paths: Catalan Numbers
26.5.1 C ( n ) = 1 n + 1 ( 2 n n ) = 1 2 n + 1 ( 2 n + 1 n ) = ( 2 n n ) ( 2 n n 1 ) = ( 2 n 1 n ) ( 2 n 1 n + 1 ) .
26.5.5 C ( n + 1 ) = k = 0 n / 2 ( n 2 k ) 2 n 2 k C ( k ) .
13: 24.4 Basic Properties
24.4.12 B n ( x + h ) = k = 0 n ( n k ) B k ( x ) h n k ,
24.4.13 E n ( x + h ) = k = 0 n ( n k ) E k ( x ) h n k ,
24.4.14 E n 1 ( x ) = 2 n k = 0 n ( n k ) ( 1 2 k ) B k x n k ,
24.4.16 E 2 n = 1 2 n + 1 k = 1 n ( 2 n 2 k 1 ) 2 2 k ( 2 2 k 1 1 ) B 2 k k ,
24.4.17 E 2 n = 1 k = 1 n ( 2 n 2 k 1 ) 2 2 k ( 2 2 k 1 ) B 2 k 2 k .
14: 26.6 Other Lattice Path Numbers
26.6.1 D ( m , n ) = k = 0 n ( n k ) ( m + n k n ) = k = 0 n 2 k ( m k ) ( n k ) .
26.6.2 M ( n ) = k = 0 n ( 1 ) k n + 2 k ( n k ) ( 2 n + 2 2 k n + 1 k ) .
26.6.3 N ( n , k ) = 1 n ( n k ) ( n k 1 ) .
26.6.13 M ( n ) = k = 0 n ( 1 ) k ( n k ) C ( n + 1 k ) ,
26.6.14 C ( n ) = k = 0 2 n ( 1 ) k ( 2 n k ) M ( 2 n k ) .
15: 25.6 Integer Arguments
25.6.8 ζ ( 2 ) = 3 k = 1 1 k 2 ( 2 k k ) .
25.6.9 ζ ( 3 ) = 5 2 k = 1 ( 1 ) k 1 k 3 ( 2 k k ) .
25.6.10 ζ ( 4 ) = 36 17 k = 1 1 k 4 ( 2 k k ) .
25.6.13 ( 1 ) k ζ ( k ) ( 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n + 1 m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n + 1 ) ζ ( m r ) ( 2 n + 1 ) ,
25.6.14 ( 1 ) k ζ ( k ) ( 1 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n ) ζ ( m r ) ( 2 n ) ,
16: 26.14 Permutations: Order Notation
26.14.5 k = 0 n 1 n k ( x + k n ) = x n .
26.14.6 n k = j = 0 k ( 1 ) j ( n + 1 j ) ( k + 1 j ) n , n 1 ,
26.14.7 n k = j = 0 n k ( 1 ) n k j j ! ( n j k ) S ( n , j ) ,
26.14.12 S ( n , m ) = 1 m ! k = 0 n 1 n k ( k n m ) , n m , n 1 .
26.14.16 n 2 = 3 n ( n + 1 ) 2 n + ( n + 1 2 ) , n 1 .
17: 15.17 Mathematical Applications
In combinatorics, hypergeometric identities classify single sums of products of binomial coefficients. …
18: 24.15 Related Sequences of Numbers
24.15.7 B n = k = 0 n ( 1 ) k ( n + 1 k + 1 ) S ( n + k , k ) / ( n + k k ) ,
24.15.11 k = 0 n / 2 ( n 2 k ) ( 5 9 ) k B 2 k u n 2 k = n 6 v n 1 + n 3 n v 2 n 2 ,
24.15.12 k = 0 n / 2 ( n 2 k ) ( 5 4 ) k E 2 k v n 2 k = 1 2 n 1 .
19: 26.8 Set Partitions: Stirling Numbers
26.8.16 s ( n , n 1 ) = S ( n , n 1 ) = ( n 2 ) ,
26.8.19 ( k h ) s ( n , k ) = j = k h n h ( n j ) s ( n j , h ) s ( j , k h ) , n k h ,
26.8.23 ( k h ) S ( n , k ) = j = k h n h ( n j ) S ( n j , h ) S ( j , k h ) , n k h ,
26.8.25 S ( n + 1 , k + 1 ) = j = k n ( n j ) S ( j , k ) ,
26.8.27 s ( n , n k ) = j = 0 k ( 1 ) j ( n 1 + j k + j ) ( n + k k j ) S ( k + j , j ) ,
20: 26.11 Integer Partitions: Compositions