About the Project

asymptotic solutions

AdvancedHelp

(0.003 seconds)

11—20 of 89 matching pages

11: Bibliography D
  • T. M. Dunster (1990b) Uniform asymptotic solutions of second-order linear differential equations having a double pole with complex exponent and a coalescing turning point. SIAM J. Math. Anal. 21 (6), pp. 1594–1618.
  • T. M. Dunster (1994b) Uniform asymptotic solutions of second-order linear differential equations having a simple pole and a coalescing turning point in the complex plane. SIAM J. Math. Anal. 25 (2), pp. 322–353.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • T. M. Dunster (1996c) Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one. Methods Appl. Anal. 3 (1), pp. 109–134.
  • 12: Bibliography Z
  • J. M. Zhang, X. C. Li, and C. K. Qu (1996) Error bounds for asymptotic solutions of second-order linear difference equations. J. Comput. Appl. Math. 71 (2), pp. 191–212.
  • 13: 16.25 Methods of Computation
    This occurs when the wanted solution is intermediate in asymptotic growth compared with other solutions. …
    14: Bibliography N
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • L. N. Nosova and S. A. Tumarkin (1965) Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations ϵ ( p y ) + ( q + ϵ r ) y = f . Pergamon Press, Oxford.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • 15: Bibliography S
  • H. Segur and M. J. Ablowitz (1981) Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent. Phys. D 3 (1-2), pp. 165–184.
  • S. Yu. Slavyanov (1996) Asymptotic Solutions of the One-dimensional Schrödinger Equation. American Mathematical Society, Providence, RI.
  • F. Stenger (1966a) Error bounds for asymptotic solutions of differential equations. I. The distinct eigenvalue case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 167–186.
  • F. Stenger (1966b) Error bounds for asymptotic solutions of differential equations. II. The general case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 187–210.
  • 16: 33.22 Particle Scattering and Atomic and Molecular Spectra
    §33.22(v) Asymptotic Solutions
    17: Bibliography T
  • S. A. Tumarkin (1959) Asymptotic solution of a linear nonhomogeneous second order differential equation with a transition point and its application to the computations of toroidal shells and propeller blades. J. Appl. Math. Mech. 23, pp. 1549–1565.
  • 18: 9.16 Physical Applications
    The frequent appearances of the Airy functions in both classical and quantum physics is associated with wave equations with turning points, for which asymptotic (WKBJ) solutions are exponential on one side and oscillatory on the other. … Again, the quest for asymptotic approximations that are uniformly valid solutions to this equation in the neighborhoods of critical points leads (after choosing solvable equations with similar asymptotic properties) to Airy functions. …
    19: Bibliography K
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • A. V. Kitaev (1987) The method of isomonodromic deformations and the asymptotics of the solutions of the “complete” third Painlevé equation. Mat. Sb. (N.S.) 134(176) (3), pp. 421–444, 448 (Russian).
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • 20: Bibliography W
  • R. Wong and H. Y. Zhang (2007) Asymptotic solutions of a fourth order differential equation. Stud. Appl. Math. 118 (2), pp. 133–152.