About the Project

as z→0

AdvancedHelp

(0.031 seconds)

21—30 of 616 matching pages

21: 19.21 Connection Formulas
Upper signs apply if 0 < ph z < π , and lower signs if π < ph z < 0 :
19.21.4 R F ( 0 , z 1 , z ) = R F ( 0 , 1 z , 1 ) i R F ( 0 , z , 1 ) ,
If 0 < p < z and y = z + 1 , then as p 0 (19.21.6) reduces to Legendre’s relation (19.21.1). … Because R G is completely symmetric, x , y , z can be permuted on the right-hand side of (19.21.10) so that ( x z ) ( y z ) 0 if the variables are real, thereby avoiding cancellations when R G is calculated from R F and R D (see §19.36(i)). … Let x , y , z be real and nonnegative, with at most one of them 0. …
22: 1.9 Calculus of a Complex Variable
and when z 0 , … A function f ( z ) is continuous at a point z 0 if lim z z 0 f ( z ) = f ( z 0 ) . … ( z 0 may or may not belong to S .) … A function f ( z ) is said to be analytic (holomorphic) at z = z 0 if it is complex differentiable in a neighborhood of z 0 . … where 𝒩 ( C , z 0 ) is an integer called the winding number of C with respect to z 0 . …
23: 10.2 Definitions
This solution of (10.2.1) is an analytic function of z , except for a branch point at z = 0 when ν is not an integer. … For fixed z ( 0 ) each branch of J ν ( z ) is entire in ν . … Whether or not ν is an integer Y ν ( z ) has a branch point at z = 0 . … For fixed z ( 0 ) each branch of Y ν ( z ) is entire in ν . … Each solution has a branch point at z = 0 for all ν . …
24: 14.28 Sums
When z 1 > 0 , z 2 > 0 , | ph ( z 1 1 ) | < π , and | ph ( z 2 1 ) | < π ,
14.28.1 P ν ( z 1 z 2 ( z 1 2 1 ) 1 / 2 ( z 2 2 1 ) 1 / 2 cos ϕ ) = P ν ( z 1 ) P ν ( z 2 ) + 2 m = 1 ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) P ν m ( z 1 ) P ν m ( z 2 ) cos ( m ϕ ) ,
where the branches of the square roots have their principal values when z 1 , z 2 ( 1 , ) and are continuous when z 1 , z 2 ( 0 , 1 ] . …
14.28.2 n = 0 ( 2 n + 1 ) Q n ( z 1 ) P n ( z 2 ) = 1 z 1 z 2 , z 1 1 , z 2 2 ,
25: 10.30 Limiting Forms
§10.30(i) z 0
When ν is fixed and z 0 , …
10.30.2 K ν ( z ) 1 2 Γ ( ν ) ( 1 2 z ) ν , ν > 0 ,
10.30.3 K 0 ( z ) ln z .
26: 23.9 Laurent and Other Power Series
Let z 0 ( 0 ) be the nearest lattice point to the origin, and define …
23.9.2 ( z ) = 1 z 2 + n = 2 c n z 2 n 2 , 0 < | z | < | z 0 | ,
23.9.3 ζ ( z ) = 1 z n = 2 c n 2 n 1 z 2 n 1 , 0 < | z | < | z 0 | .
Also, Abramowitz and Stegun (1964, (18.5.25)) supplies the first 22 terms in the reverted form of (23.9.2) as 1 / ( z ) 0 . …
23.9.7 σ ( z ) = m , n = 0 a m , n ( 10 c 2 ) m ( 56 c 3 ) n z 4 m + 6 n + 1 ( 4 m + 6 n + 1 ) ! ,
27: 10.12 Generating Function and Associated Series
For z and t { 0 } , …
cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
10.12.4 1 = J 0 ( z ) + 2 J 2 ( z ) + 2 J 4 ( z ) + 2 J 6 ( z ) + ,
cos z = J 0 ( z ) 2 J 2 ( z ) + 2 J 4 ( z ) 2 J 6 ( z ) + ,
28: 3.8 Nonlinear Equations
If f ( z 0 ) = 0 and f ( z 0 ) 0 , then z 0 is a simple zero of f . If f ( z 0 ) = f ( z 0 ) = = f ( m 1 ) ( z 0 ) = 0 and f ( m ) ( z 0 ) 0 , then z 0 is a zero of f of multiplicity m ; compare §1.10(i). … An iterative method converges locally to a solution ζ if there exists a neighborhood N of ζ such that z n ζ whenever the initial approximation z 0 lies within N . … The results for z 0 = 1.5 are given in Table 3.8.2. … For an arbitrary starting point z 0 , convergence cannot be predicted, and the boundary of the set of points z 0 that generate a sequence converging to a particular zero has a very complicated structure. …
29: 4.17 Special Values and Limits
4.17.1 lim z 0 sin z z = 1 ,
4.17.2 lim z 0 tan z z = 1 .
4.17.3 lim z 0 1 cos z z 2 = 1 2 .
30: 17.14 Constant Term Identities
17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
17.14.5 n = 0 q n 2 + 2 n ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 2 z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q 2 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( q 4 z 2 ; q 4 ) = H ( q 4 ) ( q ; q 2 ) .