About the Project

as z%E2%86%920

AdvancedHelp

(0.002 seconds)

21—30 of 734 matching pages

21: 10.56 Generating Functions
When 2 | t | < | z | ,
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
22: 32.5 Integral Equations
Let K ( z , ζ ) be the solution of
32.5.1 K ( z , ζ ) = k Ai ( z + ζ 2 ) + k 2 4 z z K ( z , s ) Ai ( s + t 2 ) Ai ( t + ζ 2 ) d s d t ,
where k is a real constant, and Ai ( z ) is defined in §9.2. …
32.5.2 w ( z ) = K ( z , z ) ,
32.5.3 w ( z ) k Ai ( z ) , z + .
23: 4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
4.34.4 d d z csch z = csch z coth z ,
4.34.5 d d z sech z = sech z tanh z ,
24: 4.1 Special Notation
The main purpose of the present chapter is to extend these definitions and properties to complex arguments z . The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. Sometimes in the literature the meanings of ln and Ln are interchanged; similarly for arcsin z and Arcsin z , etc. … sin 1 z for arcsin z and Sin 1 z for Arcsin z .
25: 4.31 Special Values and Limits
Table 4.31.1: Hyperbolic functions: values at multiples of 1 2 π i .
z 0 1 2 π i π i 3 2 π i
cosh z 1 0 1 0
coth z 0 0 1
4.31.1 lim z 0 sinh z z = 1 ,
4.31.2 lim z 0 tanh z z = 1 ,
4.31.3 lim z 0 cosh z 1 z 2 = 1 2 .
26: 7.10 Derivatives
For the Hermite polynomial H n ( z ) see §18.3.
7.10.2 w ( z ) = 2 z w ( z ) + ( 2 i / π ) ,
7.10.3 w ( n + 2 ) ( z ) + 2 z w ( n + 1 ) ( z ) + 2 ( n + 1 ) w ( n ) ( z ) = 0 , n = 0 , 1 , 2 , .
d f ( z ) d z = π z g ( z ) ,
d g ( z ) d z = π z f ( z ) 1 .
27: 4.9 Continued Fractions
4.9.2 ln ( 1 + z 1 z ) = 2 z 1 z 2 3 4 z 2 5 9 z 2 7 16 z 2 9 ,
valid when z ( , 1 ] [ 1 , ) ; see Figure 4.23.1(i). … For z ,
e z = 1 1 z 1 + z 2 z 3 + z 2 z 5 + z 2
= 1 + z 1 z 2 + z 3 z 2 + z 5 z 2 + z 7
28: 12.4 Power-Series Expansions
12.4.1 U ( a , z ) = U ( a , 0 ) u 1 ( a , z ) + U ( a , 0 ) u 2 ( a , z ) ,
12.4.2 V ( a , z ) = V ( a , 0 ) u 1 ( a , z ) + V ( a , 0 ) u 2 ( a , z ) ,
where the initial values are given by (12.2.6)–(12.2.9), and u 1 ( a , z ) and u 2 ( a , z ) are the even and odd solutions of (12.2.2) given by …
12.4.4 u 2 ( a , z ) = e 1 4 z 2 ( z + ( a + 3 2 ) z 3 3 ! + ( a + 3 2 ) ( a + 7 2 ) z 5 5 ! + ) .
These series converge for all values of z .
29: 10.12 Generating Function and Associated Series
For z and t { 0 } , … Jacobi–Anger expansions: for z , θ , …
sin z = 2 J 1 ( z ) 2 J 3 ( z ) + 2 J 5 ( z ) ,
1 2 z cos z = J 1 ( z ) 9 J 3 ( z ) + 25 J 5 ( z ) 49 J 7 ( z ) + ,
1 2 z sin z = 4 J 2 ( z ) 16 J 4 ( z ) + 36 J 6 ( z ) .
30: 4.25 Continued Fractions
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
valid when z lies in the open cut plane shown in Figure 4.23.1(i).
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
valid when z lies in the open cut plane shown in Figure 4.23.1(ii). …valid when z lies in the open cut plane shown in Figure 4.23.1(iv). …