About the Project

as%20z%E2%86%920

AdvancedHelp

(0.004 seconds)

1—10 of 768 matching pages

1: 20 Theta Functions
Chapter 20 Theta Functions
2: 6.19 Tables
  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • §6.19(iii) Complex Variables, z = x + i y
  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 3: 10.75 Tables
  • Zhang and Jin (1996, pp. 185–195) tabulates J n ( x ) , J n ( x ) , Y n ( x ) , Y n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 50 , 100 , x = 1 , 5, 10, 25, 50, 100, 9S; J n + α ( x ) , J n + α ( x ) , Y n + α ( x ) , Y n + α ( x ) , n = 0 ( 1 ) 5 , 10 , 30 , 50 , 100 , α = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5 , 10 , 50 , 8S; real and imaginary parts of J n + α ( z ) , J n + α ( z ) , Y n + α ( z ) , Y n + α ( z ) , n = 0 ( 1 ) 15 , 20 ( 10 ) 50 , 100 , α = 0 , 1 2 , z = 4 + 2 i , 20 + 10 i , 8S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Zhang and Jin (1996, pp. 240–250) tabulates I n ( x ) , I n ( x ) , K n ( x ) , K n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 50 , 100 , x = 1 , 5 , 10 , 25 , 50 , 100 , 9S; I n + α ( x ) , I n + α ( x ) , K n + α ( x ) , K n + α ( x ) , n = 0 ( 1 ) 5 , 10, 30, 50, 100, α = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5, 10, 50, 8S; real and imaginary parts of I n + α ( z ) , I n + α ( z ) , K n + α ( z ) , K n + α ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, α = 0 , 1 2 , z = 4 + 2 i , 20 + 10 i , 8S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Kerimov and Skorokhodov (1984c) tabulates all zeros of I n 1 2 ( z ) and I n 1 2 ( z ) in the sector 0 ph z 1 2 π for n = 1 ( 1 ) 20 , 9S.

  • 4: 6.20 Approximations
  • Cody and Thacher (1968) provides minimax rational approximations for E 1 ( x ) , with accuracies up to 20S.

  • Cody and Thacher (1969) provides minimax rational approximations for Ei ( x ) , with accuracies up to 20S.

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, pp. 402, 410, and 415–421) gives main diagonal Padé approximations for Ein ( z ) , Si ( z ) , Cin ( z ) (valid near the origin), and E 1 ( z ) (valid for large | z | ); approximate errors are given for a selection of z -values.

  • Luke (1969b, pp. 411–414) gives rational approximations for Ein ( z ) .

  • 5: 25.12 Polylogarithms
    Other notations and names for Li 2 ( z ) include S 2 ( z ) (Kölbig et al. (1970)), Spence function Sp ( z ) (’t Hooft and Veltman (1979)), and L 2 ( z ) (Maximon (2003)). In the complex plane Li 2 ( z ) has a branch point at z = 1 . … For real or complex s and z the polylogarithm Li s ( z ) is defined by … For each fixed complex s the series defines an analytic function of z for | z | < 1 . …For other values of z , Li s ( z ) is defined by analytic continuation. …
    6: 25.3 Graphics
    See accompanying text
    Figure 25.3.1: Riemann zeta function ζ ( x ) and its derivative ζ ( x ) , 20 x 10 . Magnify
    See accompanying text
    Figure 25.3.4: Z ( t ) , 0 t 50 . Z ( t ) and ζ ( 1 2 + i t ) have the same zeros. … Magnify
    See accompanying text
    Figure 25.3.5: Z ( t ) , 1000 t 1050 . Magnify
    See accompanying text
    Figure 25.3.6: Z ( t ) , 10000 t 10050 . Magnify
    7: 7.24 Approximations
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Luke (1969b, vol. 2, pp. 422–435) gives main diagonal Padé approximations for F ( z ) , erf z , erfc z , C ( z ) , and S ( z ) ; approximate errors are given for a selection of z -values.

  • 8: 8 Incomplete Gamma and Related
    Functions
    9: 28 Mathieu Functions and Hill’s Equation
    10: 9.18 Tables
  • Miller (1946) tabulates Ai ( x ) , Ai ( x ) for x = 20 ( .01 ) 2 ; log 10 Ai ( x ) , Ai ( x ) / Ai ( x ) for x = 0 ( .1 ) 25 ( 1 ) 75 ; Bi ( x ) , Bi ( x ) for x = 10 ( .1 ) 2.5 ; log 10 Bi ( x ) , Bi ( x ) / Bi ( x ) for x = 0 ( .1 ) 10 ; M ( x ) , N ( x ) , θ ( x ) , ϕ ( x ) (respectively F ( x ) , G ( x ) , χ ( x ) , ψ ( x ) ) for x = 80 ( 1 ) 30 ( .1 ) 0 . Precision is generally 8D; slightly less for some of the auxiliary functions. Extracts from these tables are included in Abramowitz and Stegun (1964, Chapter 10), together with some auxiliary functions for large arguments.

  • Zhang and Jin (1996, p. 337) tabulates Ai ( x ) , Ai ( x ) , Bi ( x ) , Bi ( x ) for x = 0 ( 1 ) 20 to 8S and for x = 20 ( 1 ) 0 to 9D.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • Zhang and Jin (1996, p. 339) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 ; 8D.