About the Project

arguments%20e%C2%B1i%CF%80%2F3

AdvancedHelp

(0.007 seconds)

21—30 of 865 matching pages

21: 13.19 Asymptotic Expansions for Large Argument
§13.19 Asymptotic Expansions for Large Argument
13.19.2 M κ , μ ( z ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 z z κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! z s + Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e 1 2 z ± ( 1 2 + μ κ ) π i z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
provided that both μ κ 1 2 , 3 2 , . …
13.19.3 W κ , μ ( z ) e 1 2 z z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , | ph z | 3 2 π δ .
22: Bibliography K
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • M. Kodama (2011) Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37 (4), pp. Art. 47, 25.
  • P. Koev and A. Edelman (2006) The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comp. 75 (254), pp. 833–846.
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • T. H. Koornwinder and I. Sprinkhuizen-Kuyper (1978) Hypergeometric functions of 2 × 2 matrix argument are expressible in terms of Appel’s functions F 4 . Proc. Amer. Math. Soc. 70 (1), pp. 39–42.
  • 23: 35 Functions of Matrix Argument
    Chapter 35 Functions of Matrix Argument
    24: 8.28 Software
    §8.28(ii) Incomplete Gamma Functions for Real Argument and Parameter
    §8.28(iii) Incomplete Gamma Functions for Complex Argument and Parameter
    §8.28(iv) Incomplete Beta Functions for Real Argument and Parameters
    §8.28(v) Incomplete Beta Functions for Complex Argument and Parameters
    §8.28(vi) Generalized Exponential Integral for Real Argument and Integer Parameter
    25: 10.40 Asymptotic Expansions for Large Argument
    §10.40 Asymptotic Expansions for Large Argument
    Products
    §10.40(ii) Error Bounds for Real Argument and Order
    §10.40(iii) Error Bounds for Complex Argument and Order
    26: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1997) New tables of Bessel functions of complex argument. Comput. Math. Math. Phys. 37 (12), pp. 1480–1482.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • W. Bühring (1987b) The behavior at unit argument of the hypergeometric function F 2 3 . SIAM J. Math. Anal. 18 (5), pp. 1227–1234.
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • R. W. Butler and A. T. A. Wood (2003) Laplace approximation for Bessel functions of matrix argument. J. Comput. Appl. Math. 155 (2), pp. 359–382.
  • 27: 20.16 Software
    §20.16(ii) Real Argument and Parameter
    §20.16(iii) Complex Argument and/or Parameter
    28: 22.22 Software
    §22.22(ii) Real Argument
    §22.22(iii) Complex Argument
    29: 15.20 Software
    §15.20(ii) Real Parameters and Argument
    §15.20(iii) Complex Parameters and Argument
    30: 10.17 Asymptotic Expansions for Large Argument
    §10.17 Asymptotic Expansions for Large Argument
    §10.17(ii) Asymptotic Expansions of Derivatives
    §10.17(iii) Error Bounds for Real Argument and Order
    §10.17(iv) Error Bounds for Complex Argument and Order
    §10.17(v) Exponentially-Improved Expansions