About the Project

apetamin p pills cheaP-pHarma.com/?id=1738

AdvancedHelp

Did you mean upeta p mills cheema-parma/?id=1738 ?

(0.014 seconds)

1—10 of 539 matching pages

1: 29.6 Fourier Series
β–Ίwith Ξ± p , Ξ² p , and Ξ³ p as in (29.3.11) and (29.3.12), and … β–Ίwith Ξ± p , Ξ² p , and Ξ³ p now defined by … β–Ίwith Ξ± p , Ξ² p , and Ξ³ p as in (29.3.13) and (29.3.14), and … β–Ίwith Ξ± p , Ξ² p , and Ξ³ p as in (29.3.15), (29.3.16), and … β–Ίwith Ξ± p , Ξ² p , and Ξ³ p as in (29.3.17), and …
2: 27.9 Quadratic Characters
β–ΊIf p divides n , then the value of ( n | p ) is 0 . …It is sometimes written as ( n p ) . … β–ΊIf p , q are distinct odd primes, then the quadratic reciprocity law states that … β–ΊThe Jacobi symbol ( n | P ) is a Dirichlet character (mod P ). Both (27.9.1) and (27.9.2) are valid with p replaced by P ; the reciprocity law (27.9.3) holds if p , q are replaced by any two relatively prime odd integers P , Q .
3: 16.9 Zeros
β–ΊAssume that p = q and none of the a j is a nonpositive integer. Then F p p ⁑ ( 𝐚 ; 𝐛 ; z ) has at most finitely many zeros if and only if the a j can be re-indexed for j = 1 , , p in such a way that a j b j is a nonnegative integer. β–ΊNext, assume that p = q and that the a j and the quotients ( 𝐚 ) j / ( 𝐛 ) j are all real. Then F p p ⁑ ( 𝐚 ; 𝐛 ; z ) has at most finitely many real zeros. …
4: 20 Theta Functions
5: 24.10 Arithmetic Properties
β–ΊHere and elsewhere in §24.10 the symbol p denotes a prime number. …where the summation is over all p such that p 1 divides 2 ⁒ n . The denominator of B 2 ⁒ n is the product of all these primes p . … β–Ίvalid when m n ( mod ( p 1 ) ⁒ p β„“ ) and n ⁒ ⁒ 0 ( mod p 1 ) , where β„“ ( 0 ) is a fixed integer. …where p ( > 2 ) is a prime and n 2 . …
6: 16.10 Expansions in Series of F q p Functions
§16.10 Expansions in Series of F q p Functions
β–Ί
16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
β–Ί β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
7: 32.1 Special Notation
β–ΊThe functions treated in this chapter are the solutions of the Painlevé equations P I P VI .
8: 16.19 Identities
β–Ί
16.19.1 G p , q m , n ⁑ ( 1 z ; a 1 , , a p b 1 , , b q ) = G q , p n , m ⁑ ( z ; 1 b 1 , , 1 b q 1 a 1 , , 1 a p ) ,
β–Ί
16.19.2 z μ ⁒ G p , q m , n ⁑ ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ⁑ ( z ; a 1 + μ , , a p + μ b 1 + μ , , b q + μ ) ,
β–Ί
16.19.3 G p + 1 , q + 1 m , n + 1 ⁑ ( z ; a 0 , , a p b 1 , , b q , a 0 ) = G p , q m , n ⁑ ( z ; a 1 , , a p b 1 , , b q ) ,
β–Ί
16.19.4 G p , q m , n ⁑ ( z ; a 1 , , a p b 1 , , b q ) = 2 p + 1 + b 1 + β‹― + b q m n a 1 β‹― a p Ο€ m + n 1 2 ⁒ ( p + q ) ⁒ G 2 ⁒ p , 2 ⁒ q 2 ⁒ m , 2 ⁒ n ⁑ ( 2 2 ⁒ p 2 ⁒ q ⁒ z 2 ; 1 2 ⁒ a 1 , 1 2 ⁒ a 1 + 1 2 , , 1 2 ⁒ a p , 1 2 ⁒ a p + 1 2 1 2 ⁒ b 1 , 1 2 ⁒ b 1 + 1 2 , , 1 2 ⁒ b q , 1 2 ⁒ b q + 1 2 ) ,
β–Ί
16.19.5 Ο‘ G p , q m , n ⁑ ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ⁑ ( z ; a 1 1 , a 2 , , a p b 1 , , b q ) + ( a 1 1 ) ⁒ G p , q m , n ⁑ ( z ; a 1 , , a p b 1 , , b q ) ,
9: 29.7 Asymptotic Expansions
β–Ί
p = 2 ⁒ m + 1 ,
β–Ί
29.7.4 Ο„ 1 = p 2 6 ⁒ ( ( 1 + k 2 ) 2 ⁒ ( p 2 + 3 ) 4 ⁒ k 2 ⁒ ( p 2 + 5 ) ) .
β–Ί
29.7.6 Ο„ 2 = 1 2 10 ⁒ ( 1 + k 2 ) ⁒ ( 1 k 2 ) 2 ⁒ ( 5 ⁒ p 4 + 34 ⁒ p 2 + 9 ) ,
β–Ί
29.7.7 Ο„ 3 = p 2 14 ⁒ ( ( 1 + k 2 ) 4 ⁒ ( 33 ⁒ p 4 + 410 ⁒ p 2 + 405 ) 24 ⁒ k 2 ⁒ ( 1 + k 2 ) 2 ⁒ ( 7 ⁒ p 4 + 90 ⁒ p 2 + 95 ) + 16 ⁒ k 4 ⁒ ( 9 ⁒ p 4 + 130 ⁒ p 2 + 173 ) ) ,
β–Ί
29.7.8 Ο„ 4 = 1 2 16 ⁒ ( ( 1 + k 2 ) 5 ⁒ ( 63 ⁒ p 6 + 1260 ⁒ p 4 + 2943 ⁒ p 2 + 486 ) 8 ⁒ k 2 ⁒ ( 1 + k 2 ) 3 ⁒ ( 49 ⁒ p 6 + 1010 ⁒ p 4 + 2493 ⁒ p 2 + 432 ) + 16 ⁒ k 4 ⁒ ( 1 + k 2 ) ⁒ ( 35 ⁒ p 6 + 760 ⁒ p 4 + 2043 ⁒ p 2 + 378 ) ) .
10: 18.7 Interrelations and Limit Relations
β–Ί
18.7.3 T n ⁑ ( x ) = P n ( 1 2 , 1 2 ) ⁑ ( x ) / P n ( 1 2 , 1 2 ) ⁑ ( 1 ) ,
β–Ί
18.7.4 U n ⁑ ( x ) = C n ( 1 ) ⁑ ( x ) = ( n + 1 ) ⁒ P n ( 1 2 , 1 2 ) ⁑ ( x ) / P n ( 1 2 , 1 2 ) ⁑ ( 1 ) ,
β–Ί
18.7.9 P n ⁑ ( x ) = C n ( 1 2 ) ⁑ ( x ) = P n ( 0 , 0 ) ⁑ ( x ) .
β–Ί
18.7.13 P 2 ⁒ n ( α , α ) ⁑ ( x ) P 2 ⁒ n ( α , α ) ⁑ ( 1 ) = P n ( α , 1 2 ) ⁑ ( 2 ⁒ x 2 1 ) P n ( α , 1 2 ) ⁑ ( 1 ) ,
β–Ί
18.7.14 P 2 ⁒ n + 1 ( α , α ) ⁑ ( x ) P 2 ⁒ n + 1 ( α , α ) ⁑ ( 1 ) = x ⁒ P n ( α , 1 2 ) ⁑ ( 2 ⁒ x 2 1 ) P n ( α , 1 2 ) ⁑ ( 1 ) .