About the Project

accessory%20parameter

AdvancedHelp

(0.002 seconds)

11—20 of 444 matching pages

11: 28.16 Asymptotic Expansions for Large q
28.16.1 λ ν ( h 2 ) 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
12: 36.4 Bifurcation Sets
36.4.5 x = 0 .
36.4.6 27 x 2 = 8 y 3 .
x = 9 20 z 2 .
x = 3 20 z 2 ,
36.4.13 x = y = 1 4 z 2 .
13: 36.5 Stokes Sets
36.5.2 y 3 = 27 4 ( 27 5 ) x 2 = 1.32403 x 2 .
36.5.4 80 x 5 40 x 4 55 x 3 + 5 x 2 + 20 x 1 = 0 ,
36.5.7 X = 9 20 + 20 u 4 Y 2 20 u 2 + 6 u 2 sign ( z ) ,
36.5.11 x z 2 = 1 12 u 2 + 8 u | y z 2 | 1 3 u ( u ( 2 3 u ) ) 1 / 2 .
36.5.12 8 u 3 4 u 2 | y 3 z 2 | ( u 2 3 u ) 1 / 2 = y 2 6 w z 4 2 w 3 2 w 2 ,
14: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
27.2.10 σ α ( n ) = d | n d α ,
is the sum of the α th powers of the divisors of n , where the exponent α can be real or complex. …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
15: 28.1 Special Notation
m , n integers.
ν order of the Mathieu function or modified Mathieu function. (When ν is an integer it is often replaced by n .)
a , q , h real or complex parameters of Mathieu’s equation with q = h 2 .
Alternative notations for the parameters a and q are shown in Table 28.1.1.
Table 28.1.1: Notations for parameters in Mathieu’s equation.
Reference a q
Abramowitz and Stegun (1964, Chapter 20)
16: 25.12 Polylogarithms
See accompanying text
Figure 25.12.1: Dilogarithm function Li 2 ( x ) , 20 x < 1 . Magnify
See accompanying text
Figure 25.12.2: Absolute value of the dilogarithm function | Li 2 ( x + i y ) | , 20 x 20 , 20 y 20 . … Magnify 3D Help
25.12.13 Li s ( e 2 π i a ) + e π i s Li s ( e 2 π i a ) = ( 2 π ) s e π i s / 2 Γ ( s ) ζ ( 1 s , a ) ,
17: 8.17 Incomplete Beta Functions
Throughout §§8.17 and 8.18 we assume that a > 0 , b > 0 , and 0 x 1 . …
8.17.4 I x ( a , b ) = 1 I 1 x ( b , a ) .
With a > 0 , b > 0 , and 0 < x < 1 , …
8.17.13 ( a + b ) I x ( a , b ) = a I x ( a + 1 , b ) + b I x ( a , b + 1 ) ,
8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
18: 8 Incomplete Gamma and Related
Functions
19: 28 Mathieu Functions and Hill’s Equation
20: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.