About the Project

Whittaker equation

AdvancedHelp

(0.002 seconds)

1—10 of 86 matching pages

1: 28.32 Mathematical Applications
§28.32(ii) Paraboloidal Coordinates
is separated in this system, each of the separated equations can be reduced to the Whittaker–Hill equation (28.31.1), in which A , B are separation constants. …
2: 13.14 Definitions and Basic Properties
§13.14(i) Differential Equation
Whittaker’s Equation
Standard solutions are: …
13.14.14 M κ , μ ( z ) = z μ + 1 2 ( 1 + O ( z ) ) , 2 μ 1 , 2 , 3 , .
§13.14(v) Numerically Satisfactory Solutions
3: 13.28 Physical Applications
and V κ , μ ( j ) ( z ) , j = 1 , 2 , denotes any pair of solutions of Whittaker’s equation (13.14.1). …
4: Bibliography U
  • K. M. Urwin and F. M. Arscott (1970) Theory of the Whittaker-Hill equation. Proc. Roy. Soc. Edinburgh Sect. A 69, pp. 28–44.
  • 5: 28.31 Equations of Whittaker–Hill and Ince
    §28.31 Equations of Whittaker–Hill and Ince
    §28.31(i) Whittaker–Hill Equation
    and constant values of A , B , k , and c , is called the Equation of Whittaker–Hill. …
    6: 28.34 Methods of Computation
  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • 7: 13.18 Relations to Other Functions
    13.18.1 M 0 , 1 2 ( 2 z ) = 2 sinh z ,
    13.18.3 M κ , κ 1 2 ( z ) = e 1 2 z z κ .
    13.18.7 W 1 4 , ± 1 4 ( z 2 ) = e 1 2 z 2 π z erfc ( z ) .
    13.18.10 W 0 , 1 3 ( 4 3 z 3 2 ) = 2 π z 1 4 Ai ( z ) .
    13.18.11 W 1 2 a , ± 1 4 ( 1 2 z 2 ) = 2 1 2 a z U ( a , z ) ,
    8: 13.25 Products
    13.25.1 M κ , μ ( z ) M κ , μ 1 ( z ) + ( 1 2 + μ + κ ) ( 1 2 + μ κ ) 4 μ ( 1 + μ ) ( 1 + 2 μ ) 2 M κ , μ + 1 ( z ) M κ , μ ( z ) = 1 .
    9: 13.27 Mathematical Applications
    For applications of Whittaker functions to the uniform asymptotic theory of differential equations with a coalescing turning point and simple pole see §§2.8(vi) and 18.15(i).
    10: 13.19 Asymptotic Expansions for Large Argument
    13.19.1 M κ , μ ( x ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 x x κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! x s , μ κ 1 2 , 3 2 , .
    13.19.2 M κ , μ ( z ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 z z κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! z s + Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e 1 2 z ± ( 1 2 + μ κ ) π i z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
    13.19.3 W κ , μ ( z ) e 1 2 z z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , | ph z | 3 2 π δ .