About the Project

Waring%20problem

AdvancedHelp

(0.001 seconds)

1—10 of 184 matching pages

1: 27.13 Functions
§27.13(iii) Waring’s Problem
This problem is named after Edward Waring who, in 1770, stated without proof and with limited numerical evidence, that every positive integer n is the sum of four squares, of nine cubes, of nineteen fourth powers, and so on. Waring’s problem is to find, for each positive integer k , whether there is an integer m (depending only on k ) such that the equation … For example, g ( 3 ) = 9 , g ( 4 ) = 19 , g ( 5 ) = 37 , g ( 6 ) = 73 , g ( 7 ) = 143 , and g ( 8 ) = 279 . … The existence of G ( k ) follows from that of g ( k ) because G ( k ) g ( k ) , but only the values G ( 2 ) = 4 and G ( 4 ) = 16 are known exactly. …
2: Bibliography H
  • E. Hairer, S. P. Nørsett, and G. Wanner (1993) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 8, Springer-Verlag, Berlin.
  • E. Hairer, S. P. Nørsett, and G. Wanner (2000) Solving Ordinary Differential Equations. I. Nonstiff Problems. 2nd edition, Springer-Verlag, Berlin.
  • E. Hairer and G. Wanner (1996) Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. 2nd edition, Springer Series in Computational Mathematics, Vol. 14, Springer-Verlag, Berlin.
  • G. H. Hardy and J. E. Littlewood (1925) Some problems of “Partitio Numerorum” (VI): Further researches in Waring’s Problem. Math. Z. 23, pp. 1–37.
  • S. P. Hastings and J. B. McLeod (1980) A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation. Arch. Rational Mech. Anal. 73 (1), pp. 31–51.
  • 3: Bibliography E
  • W. J. Ellison (1971) Waring’s problem. Amer. Math. Monthly 78 (1), pp. 10–36.
  • 4: William P. Reinhardt
    Older work on the scattering theory of the atomic Coulomb problem led to the discovery of new classes of orthogonal polynomials relating to the spectral theory of Schrödinger operators, and new uses of old ones: this work was strongly motivated by his original ownership of a 1964 hard copy printing of the original AMS 55 NBS Handbook of Mathematical Functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    5: 20 Theta Functions
    Chapter 20 Theta Functions
    6: 10.73 Physical Applications
    Bessel functions first appear in the investigation of a physical problem in Daniel Bernoulli’s analysis of the small oscillations of a uniform heavy flexible chain. For this problem and its further generalizations, see Korenev (2002, Chapter 4, §37) and Gray et al. (1922, Chapter I, §1, Chapter XVI, §4). … This equation governs problems in acoustic and electromagnetic wave propagation. …See Krivoshlykov (1994, Chapter 2, §2.2.10; Chapter 5, §5.2.2), Kapany and Burke (1972, Chapters 4–6; Chapter 7, §A.1), and Slater (1942, Chapter 4, §§20, 25). … More recently, Bessel functions appear in the inverse problem in wave propagation, with applications in medicine, astronomy, and acoustic imaging. …
    7: 29.19 Physical Applications
    Simply-periodic Lamé functions ( ν noninteger) can be used to solve boundary-value problems for Laplace’s equation in elliptical cones. …
    §29.19(ii) Lamé Polynomials
    Shail (1978) treats applications to solutions of elliptic crack and punch problems. …
    8: 11.12 Physical Applications
    §11.12 Physical Applications
    Applications of Struve functions occur in water-wave and surface-wave problems (Hirata (1975) and Ahmadi and Widnall (1985)), unsteady aerodynamics (Shaw (1985) and Wehausen and Laitone (1960)), distribution of fluid pressure over a vibrating disk (McLachlan (1934)), resistive MHD instability theory (Paris and Sy (1983)), and optical diffraction (Levine and Schwinger (1948)). …
    9: Bibliography G
  • R. D. M. Garashchuk and J. C. Light (2001) Quasirandom distributed bases for bound problems. J. Chem. Phys. 114 (9), pp. 3929–3939.
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • A. G. Gibbs (1973) Problem 72-21, Laplace transforms of Airy functions. SIAM Rev. 15 (4), pp. 796–798.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • H. W. Gould (1960) Stirling number representation problems. Proc. Amer. Math. Soc. 11 (3), pp. 447–451.
  • 10: 18.40 Methods of Computation
    §18.40(ii) The Classical Moment Problem
    The problem of moments is simply stated and the early work of Stieltjes, Markov, and Chebyshev on this problem was the origin of the understanding of the importance of both continued fractions and OP’s in many areas of analysis. Given the power moments, μ n = a b x n d μ ( x ) , n = 0 , 1 , 2 , , can these be used to find a unique μ ( x ) , a non-decreasing, real, function of x , in the case that the moment problem is determined? Should a unique solution not exist the moment problem is then indeterminant. … Results of low ( 2 to 3 decimal digits) precision for w ( x ) are easily obtained for N 10 to 20 . …