About the Project

Stirling%20numbers%20%28first%20and%20second%20kinds%29

AdvancedHelp

(0.005 seconds)

11—20 of 428 matching pages

11: 27.2 Functions
Euclid’s Elements (Euclid (1908, Book IX, Proposition 20)) gives an elegant proof that there are infinitely many primes. …
Table 27.2.2: Functions related to division.
n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
7 6 2 8 20 8 6 42 33 20 4 48 46 22 4 72
12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
12: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • W. E. Bleick and P. C. C. Wang (1974) Asymptotics of Stirling numbers of the second kind. Proc. Amer. Math. Soc. 42 (2), pp. 575–580.
  • 13: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • L. Moser and M. Wyman (1958a) Asymptotic development of the Stirling numbers of the first kind. J. London Math. Soc. 33, pp. 133–146.
  • L. Moser and M. Wyman (1958b) Stirling numbers of the second kind. Duke Math. J. 25 (1), pp. 29–43.
  • 14: 26.17 The Twelvefold Way
    In this table ( k ) n is Pochhammer’s symbol, and S ( n , k ) and p k ( n ) are defined in §§26.8(i) and 26.9(i). …
    Table 26.17.1: The twelvefold way.
    elements of N elements of K f unrestricted f one-to-one f onto
    labeled labeled k n ( k n + 1 ) n k ! S ( n , k )
    labeled unlabeled S ( n , 1 ) + S ( n , 2 ) + + S ( n , k ) { 1 n k 0 n > k S ( n , k )
    15: 8 Incomplete Gamma and Related
    Functions
    16: 27.15 Chinese Remainder Theorem
    Their product m has 20 digits, twice the number of digits in the data. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    17: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 23 Weierstrass Elliptic and Modular
    Functions
    19: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 20: Peter L. Walker