Sines
(0.001 seconds)
1—10 of 300 matching pages
1: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
… ►§8.21(iv) Interrelations
… ►§8.21(v) Special Values
… ►§8.21(viii) Asymptotic Expansions
… ►2: 6.2 Definitions and Interrelations
…
►
§6.2(ii) Sine and Cosine Integrals
… ► is an odd entire function. … ►Values at Infinity
… ►Hyperbolic Analogs of the Sine and Cosine Integrals
… ►§6.2(iii) Auxiliary Functions
…3: 4.35 Identities
4: 6.1 Special Notation
…
►Unless otherwise noted, primes indicate derivatives with respect to the argument.
►The main functions treated in this chapter are the exponential integrals , , and ; the logarithmic integral ; the sine integrals and ; the cosine integrals and .
5: 6.17 Physical Applications
§6.17 Physical Applications
… ►Lebedev (1965) gives an application to electromagnetic theory (radiation of a linear half-wave oscillator), in which sine and cosine integrals are used.6: 10.64 Integral Representations
7: 4.21 Identities
8: 4.1 Special Notation
…
►
►
…
►The main functions treated in this chapter are the logarithm , ; the exponential , ; the circular trigonometric (or just trigonometric) functions , , , , , ; the inverse trigonometric functions , , etc.
; the hyperbolic trigonometric (or just hyperbolic) functions , , , , , ; the inverse hyperbolic functions , , etc.
►Sometimes in the literature the meanings of and are interchanged; similarly for and , etc.
… for and for .
integers. | |
… |
9: 4.14 Definitions and Periodicity
…
►
4.14.1
…
►
4.14.5
…
►The functions and are entire.
In the zeros of are , ; the zeros of are , .
…
►
4.14.8
…