About the Project

Sines

AdvancedHelp

(0.001 seconds)

1—10 of 300 matching pages

1: 8.21 Generalized Sine and Cosine Integrals
§8.21 Generalized Sine and Cosine Integrals
§8.21(iv) Interrelations
§8.21(v) Special Values
§8.21(viii) Asymptotic Expansions
2: 6.2 Definitions and Interrelations
§6.2(ii) Sine and Cosine Integrals
Si ( z ) is an odd entire function. …
Values at Infinity
Hyperbolic Analogs of the Sine and Cosine Integrals
§6.2(iii) Auxiliary Functions
3: 4.35 Identities
4.35.16 2 sinh u cosh v = sinh ( u + v ) + sinh ( u v ) .
4.35.17 sinh 2 u sinh 2 v = sinh ( u + v ) sinh ( u v ) ,
4.35.23 sinh ( z ) = sinh z ,
4.35.29 sinh ( 3 z ) = 3 sinh z + 4 sinh 3 z ,
4.35.34 sinh z = sinh x cos y + i cosh x sin y ,
4: 6.1 Special Notation
Unless otherwise noted, primes indicate derivatives with respect to the argument. The main functions treated in this chapter are the exponential integrals Ei ( x ) , E 1 ( z ) , and Ein ( z ) ; the logarithmic integral li ( x ) ; the sine integrals Si ( z ) and si ( z ) ; the cosine integrals Ci ( z ) and Cin ( z ) .
5: 6.17 Physical Applications
§6.17 Physical Applications
Lebedev (1965) gives an application to electromagnetic theory (radiation of a linear half-wave oscillator), in which sine and cosine integrals are used.
6: 10.64 Integral Representations
10.64.1 ber n ( x 2 ) = ( 1 ) n π 0 π cos ( x sin t n t ) cosh ( x sin t ) d t ,
10.64.2 bei n ( x 2 ) = ( 1 ) n π 0 π sin ( x sin t n t ) sinh ( x sin t ) d t .
7: 4.21 Identities
4.21.15 2 sin u sin v = cos ( u v ) cos ( u + v ) ,
4.21.17 2 sin u cos v = sin ( u v ) + sin ( u + v ) .
4.21.18 sin 2 u sin 2 v = sin ( u + v ) sin ( u v ) ,
4.21.24 sin ( z ) = sin z ,
4.21.30 sin ( 3 z ) = 3 sin z 4 sin 3 z ,
8: 4.1 Special Notation
k , m , n integers.
The main functions treated in this chapter are the logarithm ln z , Ln z ; the exponential exp z , e z ; the circular trigonometric (or just trigonometric) functions sin z , cos z , tan z , csc z , sec z , cot z ; the inverse trigonometric functions arcsin z , Arcsin z , etc. ; the hyperbolic trigonometric (or just hyperbolic) functions sinh z , cosh z , tanh z , csch z , sech z , coth z ; the inverse hyperbolic functions arcsinh z , Arcsinh z , etc. Sometimes in the literature the meanings of ln and Ln are interchanged; similarly for arcsin z and Arcsin z , etc. … sin 1 z for arcsin z and Sin 1 z for Arcsin z .
9: 4.14 Definitions and Periodicity
4.14.1 sin z = e i z e i z 2 i ,
4.14.5 csc z = 1 sin z ,
The functions sin z and cos z are entire. In the zeros of sin z are z = k π , k ; the zeros of cos z are z = ( k + 1 2 ) π , k . …
4.14.8 sin ( z + 2 k π ) = sin z ,
10: 4.32 Inequalities
4.32.1 cosh x ( sinh x x ) 3 ,
4.32.2 sin x cos x < tanh x < x , x > 0 ,
4.32.3 | cosh x cosh y | | x y | sinh x sinh y , x > 0 , y > 0 ,