About the Project

Schläfli–Sommerfeld integrals

AdvancedHelp

(0.002 seconds)

11—20 of 422 matching pages

11: Bibliography R
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • W. H. Reid (1974b) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. II. The general theory. Studies in Appl. Math. 53, pp. 217–224.
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ž. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • 12: 10.9 Integral Representations
    Schläfli’s and Related Integrals
    §10.9(ii) Contour Integrals
    SchläfliSommerfeld Integrals
    Schläfli’s Integral
    13: 9.16 Physical Applications
    The function Ai ( x ) first appears as an integral in two articles by G. … A quite different application is made in the study of the diffraction of sound pulses by a circular cylinder (Friedlander (1958)). … In the study of the stability of a two-dimensional viscous fluid, the flow is governed by the Orr–Sommerfeld equation (a fourth-order differential equation). …
    14: 28.18 Integrals and Integral Equations
    §28.18 Integrals and Integral Equations
    15: 9.13 Generalized Airy Functions
    §9.13(ii) Generalizations from Integral Representations
    Reid (1972) and Drazin and Reid (1981, Appendix) introduce the following contour integrals in constructing approximate solutions to the Orr–Sommerfeld equation for fluid flow: … and the difference equation … Connection formulas for the solutions of (9.13.31) include …
    16: Bibliography S
  • I. Shavitt and M. Karplus (1965) Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43 (2), pp. 398–414.
  • B. L. Shea (1988) Algorithm AS 239. Chi-squared and incomplete gamma integral. Appl. Statist. 37 (3), pp. 466–473.
  • B. D. Sleeman (1969) Non-linear integral equations for Heun functions. Proc. Edinburgh Math. Soc. (2) 16, pp. 281–289.
  • I. N. Sneddon (1972) The Use of Integral Transforms. McGraw-Hill, New York.
  • A. Sommerfeld (1928) Atombau und Spektrallinien. Vieweg, Braunschweig.
  • 17: 33.1 Special Notation
    The main functions treated in this chapter are first the Coulomb radial functions F ( η , ρ ) , G ( η , ρ ) , H ± ( η , ρ ) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , c ( ϵ , ; r ) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions. …
    18: 19.35 Other Applications
    §19.35(i) Mathematical
    Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)).
    §19.35(ii) Physical
    19: 6.1 Special Notation
    Unless otherwise noted, primes indicate derivatives with respect to the argument. The main functions treated in this chapter are the exponential integrals Ei ( x ) , E 1 ( z ) , and Ein ( z ) ; the logarithmic integral li ( x ) ; the sine integrals Si ( z ) and si ( z ) ; the cosine integrals Ci ( z ) and Cin ( z ) .
    20: 25.7 Integrals
    §25.7 Integrals
    For definite integrals of the Riemann zeta function see Prudnikov et al. (1986b, §2.4), Prudnikov et al. (1992a, §3.2), and Prudnikov et al. (1992b, §3.2).