About the Project

Rogers%E2%80%93Szeg%C5%91%20polynomials

AdvancedHelp

The term"szeg" was not found.Possible alternative term: "szegΕ‘".

(0.004 seconds)

1—10 of 336 matching pages

1: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
§31.5 Solutions Analytic at Three Singularities: Heun Polynomials
β–Ί
31.5.2 𝐻𝑝 n , m ⁑ ( a , q n , m ; n , Ξ² , Ξ³ , Ξ΄ ; z ) = H ⁒ β„“ ⁑ ( a , q n , m ; n , Ξ² , Ξ³ , Ξ΄ ; z )
β–Ίis a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . These solutions are the Heun polynomials. …
2: 35.4 Partitions and Zonal Polynomials
§35.4 Partitions and Zonal Polynomials
β–Ί
Normalization
β–Ί
Orthogonal Invariance
β–Ί
Summation
β–Ί
Mean-Value
3: Bibliography
β–Ί
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I Ξ½ ⁒ ( x ) and J Ξ½ ⁒ ( x ) , x 0 , Ξ½ 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • β–Ί
  • G. E. Andrews (1966b) q -identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33 (3), pp. 575–581.
  • β–Ί
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • β–Ί
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 4: 17.18 Methods of Computation
    β–ΊLehner (1941) uses Method (2) in connection with the Rogers–Ramanujan identities. …
    5: David M. Bressoud
    β–ΊHis books are Analytic and Combinatorial Generalizations of the Rogers-Ramanujan Identities, published in Memoirs of the American Mathematical Society 24, No. …
    6: 26.10 Integer Partitions: Other Restrictions
    β–Ί
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    β–Ί β–Ίβ–Ίβ–Ί
    p ⁑ ( π’Ÿ , n ) p ⁑ ( π’Ÿ ⁒ 2 , n ) p ⁑ ( π’Ÿ ⁒ 2 , T , n ) p ⁑ ( π’Ÿ ⁒ 3 , n )
    20 64 31 20 18
    β–Ί
    β–Ί
    26.10.3 ( 1 x ) ⁒ m , n = 0 p m ⁑ ( k , π’Ÿ , n ) ⁒ x m ⁒ q n = m = 0 k [ k m ] q ⁒ q m ⁒ ( m + 1 ) / 2 ⁒ x m = j = 1 k ( 1 + x ⁒ q j ) , | x | < 1 ,
    β–Ί
    §26.10(iv) Identities
    β–ΊEquations (26.10.13) and (26.10.14) are the Rogers–Ramanujan identities. …
    7: 18.1 Notation
    β–Ί
    Classical OP’s
    β–Ί
    Hahn Class OP’s
    β–Ί
    Wilson Class OP’s
    β–ΊNor do we consider the shifted Jacobi polynomials: …or the dilated Chebyshev polynomials of the first and second kinds: …
    8: 18.33 Polynomials Orthogonal on the Unit Circle
    β–Ί
    Askey
    β–ΊWhen a = 0 the Askey case is also known as the Rogers–SzegΕ‘ case. See for a more general class Costa et al. (2012). … β–ΊThen the corresponding orthonormal polynomials are … β–ΊFor a polynomial
    9: Bibliography R
    β–Ί
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • β–Ί
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • β–Ί
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • β–Ί
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • β–Ί
  • M. D. Rogers (2005) Partial fractions expansions and identities for products of Bessel functions. J. Math. Phys. 46 (4), pp. 043509–1–043509–18.
  • 10: 17.12 Bailey Pairs
    β–Ί β–ΊThe Bailey pair that implies the Rogers–Ramanujan identities §17.2(vi) is: …