About the Project

Remez%20second%20algorithm

AdvancedHelp

(0.004 seconds)

1—10 of 431 matching pages

1: Bibliography R
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • P. A. Rosenberg and L. P. McNamee (1976) Precision controlled trigonometric algorithms. Appl. Math. Comput. 2 (4), pp. 335–352.
  • 2: 20 Theta Functions
    Chapter 20 Theta Functions
    3: 3.11 Approximation Techniques
    A widely implemented and used algorithm for calculating the coefficients p j and q j in (3.11.16) is Remez’s second algorithm. See Remez (1957), Werner et al. (1967), and Johnson and Blair (1973). … is of fundamental importance in the FFT algorithm. …For further details and algorithms, see Van Loan (1992). …
    4: Bibliography G
  • W. Gautschi (1966) Algorithm 292: Regular Coulomb wave functions. Comm. ACM 9 (11), pp. 793–795.
  • W. Gautschi (1973) Algorithm 471: Exponential integrals. Comm. ACM 16 (12), pp. 761–763.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 5: 8 Incomplete Gamma and Related
    Functions
    6: 28 Mathieu Functions and Hill’s Equation
    7: 10.75 Tables
  • British Association for the Advancement of Science (1937) tabulates I 0 ( x ) , I 1 ( x ) , x = 0 ( .001 ) 5 , 7–8D; K 0 ( x ) , K 1 ( x ) , x = 0.01 ( .01 ) 5 , 7–10D; e x I 0 ( x ) , e x I 1 ( x ) , e x K 0 ( x ) , e x K 1 ( x ) , x = 5 ( .01 ) 10 ( .1 ) 20 , 8D. Also included are auxiliary functions to facilitate interpolation of the tables of K 0 ( x ) , K 1 ( x ) for small values of x .

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • The main tables in Abramowitz and Stegun (1964, Chapter 9) give e x I n ( x ) , e x K n ( x ) , n = 0 , 1 , 2 , x = 0 ( .1 ) 10 ( .2 ) 20 , 8D–10D or 10S; x e x I n ( x ) , ( x / π ) e x K n ( x ) , n = 0 , 1 , 2 , 1 / x = 0 ( .002 ) 0.05 ; K 0 ( x ) + I 0 ( x ) ln x , x ( K 1 ( x ) I 1 ( x ) ln x ) , x = 0 ( .1 ) 2 , 8D; e x I n ( x ) , e x K n ( x ) , n = 3 ( 1 ) 9 , x = 0 ( .2 ) 10 ( .5 ) 20 , 5S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 ( 10 ) 50 , 100 , x = 1 , 2 , 5 , 10 , 50 , 100 , 9–10S.

  • Zhang and Jin (1996, pp. 240–250) tabulates I n ( x ) , I n ( x ) , K n ( x ) , K n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 50 , 100 , x = 1 , 5 , 10 , 25 , 50 , 100 , 9S; I n + α ( x ) , I n + α ( x ) , K n + α ( x ) , K n + α ( x ) , n = 0 ( 1 ) 5 , 10, 30, 50, 100, α = 1 4 , 1 3 , 1 2 , 2 3 , 3 4 , x = 1 , 5, 10, 50, 8S; real and imaginary parts of I n + α ( z ) , I n + α ( z ) , K n + α ( z ) , K n + α ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, α = 0 , 1 2 , z = 4 + 2 i , 20 + 10 i , 8S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • 8: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 9: 23 Weierstrass Elliptic and Modular
    Functions
    10: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.