About the Project

Ramanujan%20cubic%20transformation

AdvancedHelp

(0.002 seconds)

11—20 of 267 matching pages

11: Bibliography
β–Ί
  • C. Adiga, B. C. Berndt, S. Bhargava, and G. N. Watson (1985) Chapter 16 of Ramanujan’s second notebook: Theta-functions and q -series. Mem. Amer. Math. Soc. 53 (315), pp. v+85.
  • β–Ί
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • β–Ί
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, Ο€ , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • β–Ί
  • G. E. Andrews, R. A. Askey, B. C. Berndt, and R. A. Rankin (Eds.) (1988) Ramanujan Revisited. Academic Press Inc., Boston, MA.
  • β–Ί
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • 12: Frank Garvan
    β–ΊHe is managing editor of the Ramanujan Journal, a journal devoted to areas of mathematics influenced by Ramanujan. …
    13: Bibliography J
    β–Ί
  • A. J. Jerri (1982) A note on sampling expansion for a transform with parabolic cylinder kernel. Inform. Sci. 26 (2), pp. 155–158.
  • β–Ί
  • H. K. Johansen and K. Sørensen (1979) Fast Hankel transforms. Geophysical Prospecting 27 (4), pp. 876–901.
  • β–Ί
  • F. Johansson (2012) Efficient implementation of the Hardy-Ramanujan-Rademacher formula. LMS J. Comput. Math. 15, pp. 341–359.
  • β–Ί
  • G. S. Joyce (1973) On the simple cubic lattice Green function. Philos. Trans. Roy. Soc. London Ser. A 273, pp. 583–610.
  • β–Ί
  • G. S. Joyce (1994) On the cubic lattice Green functions. Proc. Roy. Soc. London Ser. A 445, pp. 463–477.
  • 14: Bibliography K
    β–Ί
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • β–Ί
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • 15: 26.10 Integer Partitions: Other Restrictions
    β–Ί
    Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
    β–Ί β–Ίβ–Ίβ–Ί
    p ⁑ ( π’Ÿ , n ) p ⁑ ( π’Ÿ ⁒ 2 , n ) p ⁑ ( π’Ÿ ⁒ 2 , T , n ) p ⁑ ( π’Ÿ ⁒ 3 , n )
    20 64 31 20 18
    β–Ί
    β–Ί
    §26.10(iv) Identities
    β–ΊEquations (26.10.13) and (26.10.14) are the Rogers–Ramanujan identities. …
    16: Bibliography L
    β–Ί
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright Ο‰ function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • β–Ί
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • β–Ί
  • D. H. Lehmer (1943) Ramanujan’s function Ο„ ⁒ ( n ) . Duke Math. J. 10 (3), pp. 483–492.
  • β–Ί
  • D. H. Lehmer (1947) The vanishing of Ramanujan’s function Ο„ ⁒ ( n ) . Duke Math. J. 14 (2), pp. 429–433.
  • β–Ί
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • 17: 17.12 Bailey Pairs
    β–Ί
    Bailey Transform
    β–Ί β–ΊThe Bailey pair that implies the Rogers–Ramanujan identities §17.2(vi) is: …
    18: Bibliography P
    β–Ί
  • R. B. Paris (2005a) A Kummer-type transformation for a F 2 2 hypergeometric function. J. Comput. Appl. Math. 173 (2), pp. 379–382.
  • β–Ί
  • P. I. Pastro (1985) Orthogonal polynomials and some q -beta integrals of Ramanujan. J. Math. Anal. Appl. 112 (2), pp. 517–540.
  • β–Ί
  • E. Petropoulou (2000) Bounds for ratios of modified Bessel functions. Integral Transform. Spec. Funct. 9 (4), pp. 293–298.
  • β–Ί
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • β–Ί
  • A. Pinkus and S. Zafrany (1997) Fourier Series and Integral Transforms. Cambridge University Press, Cambridge.
  • 19: 1.11 Zeros of Polynomials
    β–Ί
    Cubic Equations
    β–ΊFor the roots Ξ± 1 , Ξ± 2 , Ξ± 3 , Ξ± 4 of g ⁑ ( w ) = 0 and the roots ΞΈ 1 , ΞΈ 2 , ΞΈ 3 of the resolvent cubic equationβ–Ί
    1.11.20 θ 1 ⁒ θ 2 ⁒ θ 3 = q .
    β–ΊResolvent cubic is z 3 + 12 ⁒ z 2 + 20 ⁒ z + 9 = 0 with roots ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 11 + 85 ) , ΞΈ 3 = 1 2 ⁒ ( 11 85 ) , and ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 17 + 5 ) , ΞΈ 3 = 1 2 ⁒ ( 17 5 ) . …
    20: Bibliography D
    β–Ί
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ΞΆ ⁒ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • β–Ί
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M ⁒ x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • β–Ί
  • H. Ding, K. I. Gross, and D. St. P. Richards (1996) Ramanujan’s master theorem for symmetric cones. Pacific J. Math. 175 (2), pp. 447–490.
  • β–Ί
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • β–Ί
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.