About the Project

Pochhammer%20double-loop%20contour

AdvancedHelp

(0.002 seconds)

21—30 of 260 matching pages

21: 15.10 Hypergeometric Differential Equation
15.10.8 F ( a , b n ; z ) ln z k = 1 n 1 ( n 1 ) ! ( k 1 ) ! ( n k 1 ) ! ( 1 a ) k ( 1 b ) k ( z ) k + k = 0 ( a ) k ( b ) k ( n ) k k ! z k ( ψ ( a + k ) + ψ ( b + k ) ψ ( 1 + k ) ψ ( n + k ) ) , a , b n 1 , n 2 , , 0 , 1 , 2 , ,
15.10.9 F ( m , b n ; z ) ln z k = 1 n 1 ( n 1 ) ! ( k 1 ) ! ( n k 1 ) ! ( m + 1 ) k ( 1 b ) k ( z ) k + k = 0 m ( m ) k ( b ) k ( n ) k k ! z k ( ψ ( 1 + m k ) + ψ ( b + k ) ψ ( 1 + k ) ψ ( n + k ) ) + ( 1 ) m m ! k = m + 1 ( k 1 m ) ! ( b ) k ( n ) k k ! z k , a = m , m = 0 , 1 , 2 , ; b n 1 , n 2 , , 0 , 1 , 2 , ,
15.10.10 F ( m , n ; z ) ln z k = 1 n 1 ( n 1 ) ! ( k 1 ) ! ( n k 1 ) ! ( m + 1 ) k ( + 1 ) k ( z ) k + k = 0 ( m ) k ( ) k ( n ) k k ! z k ( ψ ( 1 + m k ) + ψ ( 1 + k ) ψ ( 1 + k ) ψ ( n + k ) ) + ( 1 ) ! k = + 1 m ( k 1 ) ! ( m ) k ( n ) k k ! z k , a = m , m = 0 , 1 , 2 , ; b = , = 0 , 1 , 2 , , m .
The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
22: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 23: 23 Weierstrass Elliptic and Modular
    Functions
    24: 16.1 Special Notation
    p , q nonnegative integers.
    ( 𝐚 ) k ( a 1 ) k ( a 2 ) k ( a p ) k .
    ( 𝐛 ) k ( b 1 ) k ( b 2 ) k ( b q ) k .
    25: 16.9 Zeros
    Next, assume that p = q and that the a j and the quotients ( 𝐚 ) j / ( 𝐛 ) j are all real. …
    26: 17.9 Further Transformations of ϕ r r + 1 Functions
    17.9.3 ϕ 1 2 ( a , b c ; q , z ) = ( a b z / c ; q ) ( b z / c ; q ) ϕ 2 3 ( a , c / b , 0 c , c q / ( b z ) ; q , q ) + ( a , b z , c / b ; q ) ( c , z , c / ( b z ) ; q ) ϕ 2 3 ( z , a b z / c , 0 b z , b z q / c ; q , q ) ,
    17.9.4 ϕ 1 2 ( q n , b c ; q , z ) = ( c / b ; q ) n ( c ; q ) n ( b z q ) n ϕ 2 3 ( q n , q / z , q 1 n / c b q 1 n / c , 0 ; q , q ) ,
    17.9.19 n = 0 ( a ; q 2 ) n ( b ; q ) n ( q 2 ; q 2 ) n ( c ; q ) n z n = ( b ; q ) ( a z ; q 2 ) ( c ; q ) ( z ; q 2 ) n = 0 ( c / b ; q ) 2 n ( z ; q 2 ) n b 2 n ( q ; q ) 2 n ( a z ; q 2 ) n + ( b ; q ) ( a z q ; q 2 ) ( c ; q ) ( z q ; q 2 ) n = 0 ( c / b ; q ) 2 n + 1 ( z q ; q 2 ) n b 2 n + 1 ( q ; q ) 2 n + 1 ( a z q ; q 2 ) n .
    17.9.20 n = 0 ( a ; q k ) n ( b ; q ) k n z n ( q k ; q k ) n ( c ; q ) k n = ( b ; q ) ( a z ; q k ) ( c ; q ) ( z ; q k ) n = 0 ( c / b ; q ) n ( z ; q k ) n b n ( q ; q ) n ( a z ; q k ) n , k = 1 , 2 , 3 , .
    27: 17.12 Bailey Pairs
    17.12.3 β n = j = 0 n α j ( q ; q ) n j ( a q ; q ) n + j .
    17.12.4 n = 0 q n 2 a n β n = 1 ( a q ; q ) n = 0 q n 2 a n α n .
    ( a q ρ 1 , a q ρ 2 ; q ) n β n = j = 0 n ( ρ 1 , ρ 2 ; q ) j ( a q ρ 1 ρ 2 ; q ) n j ( a q ρ 1 ρ 2 ) j β j ( q ; q ) n j
    α n = ( a ; q ) n ( 1 a q 2 n ) ( 1 ) n q n ( 3 n 1 ) / 2 a n ( q ; q ) n ( 1 a ) ,
    β n = 1 ( q ; q ) n .
    28: 18.25 Wilson Class: Definitions
    18.25.11 ω y = ( α + 1 ) y ( β + δ + 1 ) y ( γ + 1 ) y ( γ + δ + 2 ) y ( α + γ + δ + 1 ) y ( β + γ + 1 ) y ( δ + 1 ) y y ! ,
    18.25.12 h n = ( β ) N ( γ + δ + 2 ) N ( β + γ + 1 ) N ( δ + 1 ) N ( n + α + β + 1 ) n n ! ( α + β + 2 ) 2 n ( α + β γ + 1 ) n ( α δ + 1 ) n ( β + 1 ) n ( α + 1 ) n ( β + δ + 1 ) n ( γ + 1 ) n .
    18.25.14 ω y = ( 1 ) y ( N ) y ( γ + 1 ) y ( γ + δ + 1 ) 2 ( N + γ + δ + 2 ) y ( δ + 1 ) y y ! ,
    18.25.15 h n = n ! ( N n ) ! ( γ + δ + 2 ) N N ! ( γ + 1 ) n ( δ + 1 ) N n .
    Table 18.25.2: Wilson class OP’s: leading coefficients.
    p n ( x ) k n
    R n ( x ; α , β , γ , δ ) ( n + α + β + 1 ) n ( α + 1 ) n ( β + δ + 1 ) n ( γ + 1 ) n
    29: 13.7 Asymptotic Expansions for Large Argument
    13.7.4 U ( a , b , z ) = z a s = 0 n 1 ( a ) s ( a b + 1 ) s s ! ( z ) s + ε n ( z ) ,
    13.7.10 U ( a , b , z ) = z a s = 0 n 1 ( a ) s ( a b + 1 ) s s ! ( z ) s + R n ( a , b , z ) ,
    13.7.11 R n ( a , b , z ) = ( 1 ) n 2 π z a b Γ ( a ) Γ ( a b + 1 ) ( s = 0 m 1 ( 1 a ) s ( b a ) s s ! ( z ) s G n + 2 a b s ( z ) + ( 1 a ) m ( b a ) m R m , n ( a , b , z ) ) ,
    30: 13.19 Asymptotic Expansions for Large Argument
    13.19.1 M κ , μ ( x ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 x x κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! x s , μ κ 1 2 , 3 2 , .
    13.19.2 M κ , μ ( z ) Γ ( 1 + 2 μ ) Γ ( 1 2 + μ κ ) e 1 2 z z κ s = 0 ( 1 2 μ + κ ) s ( 1 2 + μ + κ ) s s ! z s + Γ ( 1 + 2 μ ) Γ ( 1 2 + μ + κ ) e 1 2 z ± ( 1 2 + μ κ ) π i z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
    13.19.3 W κ , μ ( z ) e 1 2 z z κ s = 0 ( 1 2 + μ κ ) s ( 1 2 μ κ ) s s ! ( z ) s , | ph z | 3 2 π δ .