About the Project

Mobius%20inversion

AdvancedHelp

(0.001 seconds)

21—30 of 250 matching pages

21: 20.11 Generalizations and Analogs
If both m , n are positive, then G ( m , n ) allows inversion of its arguments as a modular transformation (compare (23.15.3) and (23.15.4)): … This is Jacobi’s inversion problem of §20.9(ii). … Each provides an extension of Jacobi’s inversion problem. …
22: 4.24 Inverse Trigonometric Functions: Further Properties
§4.24 Inverse Trigonometric Functions: Further Properties
§4.24(i) Power Series
§4.24(ii) Derivatives
§4.24(iii) Addition Formulas
4.24.17 Arctan u ± Arccot v = Arctan ( u v ± 1 v u ) = Arccot ( v u u v ± 1 ) .
23: 7.17 Inverse Error Functions
§7.17 Inverse Error Functions
§7.17(i) Notation
The inverses of the functions x = erf y , x = erfc y , y , are denoted by …
§7.17(ii) Power Series
§7.17(iii) Asymptotic Expansion of inverfc x for Small x
24: 4.38 Inverse Hyperbolic Functions: Further Properties
§4.38 Inverse Hyperbolic Functions: Further Properties
§4.38(i) Power Series
§4.38(ii) Derivatives
§4.38(iii) Addition Formulas
4.38.19 Arctanh u ± Arccoth v = Arctanh ( u v ± 1 v ± u ) = Arccoth ( v ± u u v ± 1 ) .
25: 4.15 Graphics
§4.15(i) Real Arguments
Figure 4.15.7 illustrates the conformal mapping of the strip 1 2 π < z < 1 2 π onto the whole w -plane cut along the real axis from to 1 and 1 to , where w = sin z and z = arcsin w (principal value). …
See accompanying text
Figure 4.15.7: Conformal mapping of sine and inverse sine. … Magnify
§4.15(iii) Complex Arguments: Surfaces
The corresponding surfaces for arccos ( x + i y ) , arccot ( x + i y ) , arcsec ( x + i y ) can be visualized from Figures 4.15.9, 4.15.11, 4.15.13 with the aid of equations (4.23.16)–(4.23.18).
26: 3.8 Nonlinear Equations
Regula Falsi
Inverse linear interpolation (§3.3(v)) is used to obtain the first approximation: …
3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
27: 8 Incomplete Gamma and Related
Functions
28: 28 Mathieu Functions and Hill’s Equation
29: 19.10 Relations to Other Functions
arctan ( x / y ) = x R C ( y 2 , y 2 + x 2 ) ,
arctanh ( x / y ) = x R C ( y 2 , y 2 x 2 ) ,
arcsin ( x / y ) = x R C ( y 2 x 2 , y 2 ) ,
arcsinh ( x / y ) = x R C ( y 2 + x 2 , y 2 ) ,
For relations to the Gudermannian function gd ( x ) and its inverse gd 1 ( x ) 4.23(viii)), see (19.6.8) and …
30: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.