About the Project

McKean and Moll’s

AdvancedHelp

(0.001 seconds)

10 matching pages

1: 20.1 Special Notation
McKean and Molls notation: ϑ j ( z | τ ) = θ j ( π z | τ ) , j = 1 , 2 , 3 , 4 . …
2: 20.12 Mathematical Applications
For applications of Jacobi’s triple product (20.5.9) to Ramanujan’s τ ( n ) function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145). …
3: 20.9 Relations to Other Functions
The relations (20.9.1) and (20.9.2) between k and τ (or q ) are solutions of Jacobi’s inversion problem; see Baker (1995) and Whittaker and Watson (1927, pp. 480–485). …
4: 20.7 Identities
§20.7(v) Watson’s Identities
5: 22.18 Mathematical Applications
Ellipse
See Akhiezer (1990, Chapter 8) and McKean and Moll (1999, Chapter 2) for discussions of the inverse mapping. … Algebraic curves of the form y 2 = P ( x ) , where P is a nonsingular polynomial of degree 3 or 4 (see McKean and Moll (1999, §1.10)), are elliptic curves, which are also considered in §23.20(ii). …This provides an abelian group structure, and leads to important results in number theory, discussed in an elementary manner by Silverman and Tate (1992), and more fully by Koblitz (1993, Chapter 1, especially §1.7) and McKean and Moll (1999, Chapter 3). …With the identification x = sn ( z , k ) , y = d ( sn ( z , k ) ) / d z , the addition law (22.18.8) is transformed into the addition theorem (22.8.1); see Akhiezer (1990, pp. 42, 45, 73–74) and McKean and Moll (1999, §§2.14, 2.16). …
6: 20.11 Generalizations and Analogs
§20.11(ii) Ramanujan’s Theta Function and q -Series
In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7).
§20.11(iii) Ramanujan’s Change of Base
This is Jacobi’s inversion problem of §20.9(ii). …
7: 23.20 Mathematical Applications
§23.20(ii) Elliptic Curves
It follows from the addition formula (23.10.1) that the points P j = P ( z j ) , j = 1 , 2 , 3 , have zero sum iff z 1 + z 2 + z 3 𝕃 , so that addition of points on the curve C corresponds to addition of parameters z j on the torus / 𝕃 ; see McKean and Moll (1999, §§2.11, 2.14). … The geometric nature of this construction is illustrated in McKean and Moll (1999, §2.14), Koblitz (1993, §§6, 7), and Silverman and Tate (1992, Chapter 1, §§3, 4): each of these references makes a connection with the addition theorem (23.10.1). … K always has the form T × r (Mordell’s Theorem: Silverman and Tate (1992, Chapter 3, §5)); the determination of r , the rank of K , raises questions of great difficulty, many of which are still open. …
8: 23.1 Special Notation
𝕃 lattice in .
S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . … McKean and Moll (1999) replaces 2 ω 1 and 2 ω 3 by ω 1 and ω 2 , respectively.
9: 23.15 Definitions
Klein’s Complete Invariant
23.15.7 J ( τ ) = ( θ 2 8 ( 0 , q ) + θ 3 8 ( 0 , q ) + θ 4 8 ( 0 , q ) ) 3 54 ( θ 1 ( 0 , q ) ) 8 ,
Dedekind’s Eta Function (or Dedekind Modular Function)
10: Bibliography M
  • H. Maass (1971) Siegel’s modular forms and Dirichlet series. Lecture Notes in Mathematics, Vol. 216, Springer-Verlag, Berlin.
  • H. McKean and V. Moll (1999) Elliptic Curves. Cambridge University Press, Cambridge.
  • M. S. Milgram (1985) The generalized integro-exponential function. Math. Comp. 44 (170), pp. 443–458.
  • S. C. Milne (1994) A q -analog of a Whipple’s transformation for hypergeometric series in U ( n ) . Adv. Math. 108 (1), pp. 1–76.
  • D. S. Moak (1984) The q -analogue of Stirling’s formula. Rocky Mountain J. Math. 14 (2), pp. 403–413.