About the Project

McKean and Moll theta functions

AdvancedHelp

(0.003 seconds)

8 matching pages

1: 20.1 Special Notation
McKean and Moll’s notation: ϑ j ( z | τ ) = θ j ( π z | τ ) , j = 1 , 2 , 3 , 4 . …
2: 20.12 Mathematical Applications
§20.12 Mathematical Applications
For applications of θ 3 ( 0 , q ) to problems involving sums of squares of integers see §27.13(iv), and for extensions see Estermann (1959), Serre (1973, pp. 106–109), Koblitz (1993, pp. 176–177), and McKean and Moll (1999, pp. 142–143). For applications of Jacobi’s triple product (20.5.9) to Ramanujan’s τ ( n ) function and Euler’s pentagonal numbers see Hardy and Wright (1979, pp. 132–160) and McKean and Moll (1999, pp. 143–145). … For the terminology and notation see McKean and Moll (1999, pp. 48–53). …
3: 20.7 Identities
§20.7(i) Sums of Squares
§20.7(ii) Addition Formulas
§20.7(v) Watson’s Identities
§20.7(vi) Landen Transformations
§20.7(vii) Derivatives of Ratios of Theta Functions
4: 20 Theta Functions
Chapter 20 Theta Functions
5: 20.9 Relations to Other Functions
§20.9(i) Elliptic Integrals
and the notation of §19.2(ii), the complete Legendre integrals of the first kind may be expressed as theta functions: …
§20.9(ii) Elliptic Functions and Modular Functions
See §§22.2 and 23.6(i) for the relations of Jacobian and Weierstrass elliptic functions to theta functions. …
§20.9(iii) Riemann Zeta Function
6: 20.11 Generalizations and Analogs
In the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). …
7: 23.15 Definitions
§23.15 Definitions
§23.15(i) General Modular Functions
Elliptic Modular Function
Dedekind’s Eta Function (or Dedekind Modular Function)
8: 23.22 Methods of Computation
§23.22 Methods of Computation
§23.22(i) Function Values
For ( z ) we apply (23.6.2) and (23.6.5), generating all needed values of the theta functions by the methods described in §20.14. … The determination of suitable generators 2 ω 1 and 2 ω 3 is the classical inversion problem (Whittaker and Watson (1927, §21.73), McKean and Moll (1999, §2.12); see also §20.9(i) and McKean and Moll (1999, §2.16)). …