About the Project

Laguerre

AdvancedHelp

(0.000 seconds)

1—10 of 53 matching pages

1: 18.3 Definitions
§18.3 Definitions
The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. … Table 18.3.1 provides the traditional definitions of Jacobi, Laguerre, and Hermite polynomials via orthogonality and standardization (§§18.2(i) and 18.2(iii)). … For finite power series of the Jacobi, ultraspherical, Laguerre, and Hermite polynomials, see §18.5(iii) (in powers of x 1 for Jacobi polynomials, in powers of x for the other cases). Explicit power series for Chebyshev, Legendre, Laguerre, and Hermite polynomials for n = 0 , 1 , , 6 are given in §18.5(iv). …
2: 18.4 Graphics
See accompanying text
Figure 18.4.5: Laguerre polynomials L n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.6: Laguerre polynomials L 3 ( α ) ( x ) , α = 0 , 1 , 2 , 3 , 4 . Magnify
See accompanying text
Figure 18.4.8: Laguerre polynomials L 3 ( α ) ( x ) , 0 α 3 , 0 x 10 . Magnify 3D Help
3: 18.36 Miscellaneous Polynomials
Similar OP’s can also be constructed for the Laguerre polynomials; see Koornwinder (1984b, (4.8)). …
§18.36(v) Non-Classical Laguerre Polynomials L n ( k ) ( x ) , k = 1 , 2
For the Laguerre polynomials L n ( α ) ( x ) this requires, omitting all strictly positive factors, …
Type I X 1 -Laguerre EOP’s
The resulting EOP’s, L ^ n ( k ) ( x ) , n = 1 , 2 , satisfy …
4: 17.17 Physical Applications
See Kassel (1995). … It involves q -generalizations of exponentials and Laguerre polynomials, and has been applied to the problems of the harmonic oscillator and Coulomb potentials. …
5: 18.41 Tables
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. Abramowitz and Stegun (1964, Tables 22.4, 22.6, 22.11, and 22.13) tabulates T n ( x ) , U n ( x ) , L n ( x ) , and H n ( x ) for n = 0 ( 1 ) 12 . The ranges of x are 0.2 ( .2 ) 1 for T n ( x ) and U n ( x ) , and 0.5 , 1 , 3 , 5 , 10 for L n ( x ) and H n ( x ) . … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
6: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
8 L n ( α ) ( x ) x α + 1 x 0 n
9 e 1 2 x 2 x α + 1 2 L n ( α ) ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) x 2 4 n + 2 α + 2
10 e 1 2 x x 1 2 α L n ( α ) ( x ) x 1 1 4 x 1 4 α 2 x 1 n + 1 2 ( α + 1 )
11 e n 1 x x + 1 L n 1 ( 2 + 1 ) ( 2 n 1 x ) 1 0 2 x ( + 1 ) x 2 1 n 2
7: 18.6 Symmetry, Special Values, and Limits to Monomials
Laguerre
18.6.1 L n ( α ) ( 0 ) = ( α + 1 ) n n ! .
§18.6(ii) Limits to Monomials
18.6.5 lim α L n ( α ) ( α x ) L n ( α ) ( 0 ) = ( 1 x ) n .
8: 18.14 Inequalities
Laguerre
Laguerre
Laguerre
Laguerre
9: 18.18 Sums
Laguerre
Laguerre
Laguerre
Laguerre
Laguerre
10: 18.17 Integrals
Laguerre
Laguerre
Laguerre
Laguerre
Laguerre