About the Project

Krawtchouk%20polynomials

AdvancedHelp

(0.002 seconds)

1—10 of 316 matching pages

1: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
§31.5 Solutions Analytic at Three Singularities: Heun Polynomials
31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )
is a polynomial of degree n , and hence a solution of (31.2.1) that is analytic at all three finite singularities 0 , 1 , a . These solutions are the Heun polynomials. …
2: 35.4 Partitions and Zonal Polynomials
§35.4 Partitions and Zonal Polynomials
Normalization
Orthogonal Invariance
Summation
Mean-Value
3: 24.1 Special Notation
Bernoulli Numbers and Polynomials
The origin of the notation B n , B n ( x ) , is not clear. …
Euler Numbers and Polynomials
The notations E n , E n ( x ) , as defined in §24.2(ii), were used in Lucas (1891) and Nörlund (1924). …
4: 18.3 Definitions
§18.3 Definitions
For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …For explicit power series coefficients up to n = 12 for these polynomials and for coefficients up to n = 6 for Jacobi and ultraspherical polynomials see Abramowitz and Stegun (1964, pp. 793–801). …
Bessel polynomials
Bessel polynomials are often included among the classical OP’s. …
5: 18.19 Hahn Class: Definitions
§18.19 Hahn Class: Definitions
The Hahn class consists of four discrete families (Hahn, Krawtchouk, Meixner, and Charlier) and two continuous families (continuous Hahn and Meixner–Pollaczek).
Hahn, Krawtchouk, Meixner, and Charlier
Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials Q n ( x ; α , β , N ) , Krawtchouk polynomials K n ( x ; p , N ) , Meixner polynomials M n ( x ; β , c ) , and Charlier polynomials C n ( x ; a ) . …
6: Bibliography Q
  • W. Qiu and R. Wong (2004) Asymptotic expansion of the Krawtchouk polynomials and their zeros. Comput. Methods Funct. Theory 4 (1), pp. 189–226.
  • C. Quesne (2011) Higher-Order SUSY, Exactly Solvable Potentials, and Exceptional Orthogonal Polynomials. Modern Physics Letters A 26, pp. 1843–1852.
  • 7: 18.21 Hahn Class: Interrelations
    §18.21 Hahn Class: Interrelations
    §18.21(i) Dualities
    §18.21(ii) Limit Relations and Special Cases
    Hahn Krawtchouk
    Krawtchouk Charlier
    8: 18.24 Hahn Class: Asymptotic Approximations
    Krawtchouk
    With x = λ N and ν = n / N , Li and Wong (2000) gives an asymptotic expansion for K n ( x ; p , N ) as n , that holds uniformly for λ and ν in compact subintervals of ( 0 , 1 ) . … With μ = N / n and x fixed, Qiu and Wong (2004) gives an asymptotic expansion for K n ( x ; p , N ) as n , that holds uniformly for μ [ 1 , ) . …Asymptotic approximations are also provided for the zeros of K n ( x ; p , N ) in various cases depending on the values of p and μ . … Similar approximations are included for Jacobi, Krawtchouk, and Meixner polynomials.
    9: 18.22 Hahn Class: Recurrence Relations and Differences
    §18.22(i) Recurrence Relations in n
    Krawtchouk, Meixner, and Charlier
    Krawtchouk, Meixner, and Charlier
    §18.22(iii) x -Differences
    Krawtchouk
    10: 18.20 Hahn Class: Explicit Representations
    §18.20(i) Rodrigues Formulas
    Hahn, Krawtchouk, Meixner, and Charlier
    For the Hahn polynomials p n ( x ) = Q n ( x ; α , β , N ) and …For the Krawtchouk, Meixner, and Charlier polynomials, F ( x ) and κ n are as in Table 18.20.1. …
    §18.20(ii) Hypergeometric Function and Generalized Hypergeometric Functions