About the Project

Kapteyn%20inequality

AdvancedHelp

(0.001 seconds)

21—30 of 148 matching pages

21: 4.5 Inequalities
§4.5 Inequalities
§4.5(i) Logarithms
For more inequalities involving the logarithm function see Mitrinović (1964, pp. 75–77), Mitrinović (1970, pp. 272–276), and Bullen (1998, pp. 159–160).
§4.5(ii) Exponentials
(When x = 0 the inequalities become equalities.) …
22: 4.18 Inequalities
§4.18 Inequalities
Jordan’s Inequality
For more inequalities see Mitrinović (1964, pp. 101–111), Mitrinović (1970, pp. 235–265), and Bullen (1998, pp. 250–254).
23: Bibliography K
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • D. Kershaw (1983) Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp. 41 (164), pp. 607–611.
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • 24: Bibliography M
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • D. S. Mitrinović (1964) Elementary Inequalities. P. Noordhoff Ltd., Groningen.
  • D. S. Mitrinović (1970) Analytic Inequalities. Springer-Verlag, New York.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • C. Mortici (2013b) Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Modelling 57 (5-6), pp. 1360–1363.
  • 25: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 26: 23 Weierstrass Elliptic and Modular
    Functions
    27: 5.6 Inequalities
    §5.6 Inequalities
    Gautschi’s Inequality
    Kershaw’s Inequality
    28: 19.24 Inequalities
    §19.24 Inequalities
    §19.24(i) Complete Integrals
    Other inequalities can be obtained by applying Carlson (1966, Theorems 2 and 3) to (19.16.20)–(19.16.23). …
    §19.24(ii) Incomplete Integrals
    29: Donald St. P. Richards
    Richards has published numerous papers on special functions of matrix argument, harmonic analysis, multivariate statistical analysis, probability inequalities, and applied probability. …
    30: 36 Integrals with Coalescing Saddles