About the Project

Japan Airlines Reservation Number 📞850.308.3021📞

AdvancedHelp

(0.002 seconds)

11—20 of 224 matching pages

11: 26.5 Lattice Paths: Catalan Numbers
§26.5 Lattice Paths: Catalan Numbers
§26.5(i) Definitions
C ( n ) is the Catalan number. …
§26.5(ii) Generating Function
§26.5(iii) Recurrence Relations
12: 26.14 Permutations: Order Notation
As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
§26.14(iii) Identities
13: 26.7 Set Partitions: Bell Numbers
§26.7 Set Partitions: Bell Numbers
§26.7(i) Definitions
§26.7(ii) Generating Function
§26.7(iii) Recurrence Relation
§26.7(iv) Asymptotic Approximation
14: 26.8 Set Partitions: Stirling Numbers
§26.8 Set Partitions: Stirling Numbers
§26.8(i) Definitions
§26.8(v) Identities
§26.8(vi) Relations to Bernoulli Numbers
15: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …A similar method can be used for the Euler numbers based on (4.19.5). …
§24.19(ii) Values of B n Modulo p
We list here three methods, arranged in increasing order of efficiency. …
16: 27.17 Other Applications
§27.17 Other Applications
Reed et al. (1990, pp. 458–470) describes a number-theoretic approach to Fourier analysis (called the arithmetic Fourier transform) that uses the Möbius inversion (27.5.7) to increase efficiency in computing coefficients of Fourier series. Congruences are used in constructing perpetual calendars, splicing telephone cables, scheduling round-robin tournaments, devising systematic methods for storing computer files, and generating pseudorandom numbers. … There are also applications of number theory in many diverse areas, including physics, biology, chemistry, communications, and art. …
17: 26.21 Tables
§26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts ± 2 ( mod 5 ) , partitions into parts ± 1 ( mod 5 ) , and unrestricted plane partitions up to 100. It also contains a table of Gaussian polynomials up to [ 12 6 ] q . Goldberg et al. (1976) contains tables of binomial coefficients to n = 100 and Stirling numbers to n = 40 .
18: 24.10 Arithmetic Properties
§24.10 Arithmetic Properties
Here and elsewhere two rational numbers are congruent if the modulus divides the numerator of their difference.
§24.10(ii) Kummer Congruences
§24.10(iii) Voronoi’s Congruence
§24.10(iv) Factors
19: 24.14 Sums
§24.14 Sums
§24.14(i) Quadratic Recurrence Relations
24.14.2 k = 0 n ( n k ) B k B n k = ( 1 n ) B n n B n 1 .
§24.14(ii) Higher-Order Recurrence Relations
For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
20: 26.1 Special Notation
( m n ) binomial coefficient.
m n Eulerian number.
B ( n ) Bell number.
C ( n ) Catalan number.
Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).