Jacobian elliptic-function form
(0.012 seconds)
11—20 of 306 matching pages
11: 22.13 Derivatives and Differential Equations
…
►
§22.13(i) Derivatives
► … ►§22.13(ii) First-Order Differential Equations
►
22.13.1
…
►
§22.13(iii) Second-Order Differential Equations
…12: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
§22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
… ►
22.12.2
…
►
22.12.8
…
►
22.12.11
…
►
22.12.13
13: Bille C. Carlson
…
►In Symmetry in c, d, n of Jacobian elliptic functions (2004) he found a previously hidden symmetry in relations between Jacobian elliptic functions, which can now take a form that remains valid when the letters c, d, and n are permuted.
This invariance usually replaces sets of twelve equations by sets of three equations and applies also to the relation between the first symmetric elliptic integral and the Jacobian functions.
…
14: 22.20 Methods of Computation
§22.20 Methods of Computation
… ►§22.20(iii) Landen Transformations
… ►§22.20(iv) Lattice Calculations
… ►§22.20(v) Inverse Functions
… ►15: 22.9 Cyclic Identities
16: 22.6 Elementary Identities
§22.6 Elementary Identities
… ►§22.6(ii) Double Argument
… ►§22.6(iii) Half Argument
… ►§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
… ►See §22.17.17: 22.7 Landen Transformations
…
►
§22.7(i) Descending Landen Transformation
… ►
22.7.3
…
►
§22.7(ii) Ascending Landen Transformation
… ►
22.7.6
…
►
§22.7(iii) Generalized Landen Transformations
…18: 19.25 Relations to Other Functions
…
►Thus the five permutations induce five transformations of Legendre’s integrals (and also of the Jacobian elliptic functions).
…
►