About the Project

Jacobian elliptic-function form

AdvancedHelp

(0.004 seconds)

11—20 of 308 matching pages

11: 22.6 Elementary Identities
§22.6 Elementary Identities
§22.6(ii) Double Argument
§22.6(iii) Half Argument
§22.6(iv) Rotation of Argument (Jacobi’s Imaginary Transformation)
See §22.17.
12: 22.7 Landen Transformations
§22.7(i) Descending Landen Transformation
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
§22.7(ii) Ascending Landen Transformation
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
§22.7(iii) Generalized Landen Transformations
13: 22.14 Integrals
§22.14(i) Indefinite Integrals of Jacobian Elliptic Functions
§22.14(ii) Indefinite Integrals of Powers of Jacobian Elliptic Functions
The indefinite integral of the 3rd power of a Jacobian function can be expressed as an elementary function of Jacobian functions and a product of Jacobian functions. …
§22.14(iv) Definite Integrals
14: 29.15 Fourier Series and Chebyshev Series
Since (29.2.5) implies that cos ϕ = sn ( z , k ) , (29.15.1) can be rewritten in the form
15: 29.2 Differential Equations
§29.2(i) Lamé’s Equation
§29.2(ii) Other Forms
29.2.3 ξ = sn 2 ( z , k ) .
we have …
16: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . … Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
17: 31.2 Differential Equations
§31.2(ii) Normal Form of Heun’s Equation
§31.2(iii) Trigonometric Form
§31.2(iv) Doubly-Periodic Forms
Jacobi’s Elliptic Form
Weierstrass’s Form
18: 22.13 Derivatives and Differential Equations
§22.13(i) Derivatives
Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
d d z ( sn z ) = cn z dn z d d z ( dc z )  = k 2 sc z nc z
§22.13(ii) First-Order Differential Equations
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
§22.13(iii) Second-Order Differential Equations
19: 29.12 Definitions
§29.12(i) Elliptic-Function Form
The prefixes u , s , c , d , 𝑠𝑐 , 𝑠𝑑 , 𝑐𝑑 , 𝑠𝑐𝑑 indicate the type of the polynomial form of the Lamé polynomial; compare the 3rd and 4th columns in Table 29.12.1. In the fourth column the variable z and modulus k of the Jacobian elliptic functions have been suppressed, and P ( sn 2 ) denotes a polynomial of degree n in sn 2 ( z , k ) (different for each type). …
§29.12(ii) Algebraic Form
With the substitution ξ = sn 2 ( z , k ) every Lamé polynomial in Table 29.12.1 can be written in the form
20: 22.10 Maclaurin Series
§22.10(i) Maclaurin Series in z
22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
§22.10(ii) Maclaurin Series in k and k
22.10.6 dn ( z , k ) = 1 k 2 2 sin 2 z + O ( k 4 ) ,