About the Project

Jacobian

AdvancedHelp

(0.001 seconds)

21—30 of 56 matching pages

21: 22.20 Methods of Computation
§22.20 Methods of Computation
§22.20(iii) Landen Transformations
§22.20(iv) Lattice Calculations
§22.20(v) Inverse Functions
22: 22.21 Tables
§22.21 Tables
Tables of theta functions (§20.15) can also be used to compute the twelve Jacobian elliptic functions by application of the quotient formulas given in §22.2.
23: Bille C. Carlson
In Symmetry in c, d, n of Jacobian elliptic functions (2004) he found a previously hidden symmetry in relations between Jacobian elliptic functions, which can now take a form that remains valid when the letters c, d, and n are permuted. This invariance usually replaces sets of twelve equations by sets of three equations and applies also to the relation between the first symmetric elliptic integral and the Jacobian functions. …
24: Peter L. Walker
25: 22.9 Cyclic Identities
§22.9 Cyclic Identities
§22.9(i) Notation
26: 29.18 Mathematical Applications
29.18.6 d 2 u 2 d β 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( β , k ) ) u 2 = 0 ,
29.18.7 d 2 u 3 d γ 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( γ , k ) ) u 3 = 0 ,
27: 29.11 Lamé Wave Equation
29.11.1 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) + k 2 ω 2 sn 4 ( z , k ) ) w = 0 ,
28: 29.15 Fourier Series and Chebyshev Series
29: 19.10 Relations to Other Functions
§19.10(i) Theta and Elliptic Functions
For relations of Legendre’s integrals to theta functions, Jacobian functions, and Weierstrass functions, see §§20.9(i), 22.15(ii), and 23.6(iv), respectively. …
30: 29.8 Integral Equations
29.8.1 x = k 2 sn ( z , k ) sn ( z 1 , k ) sn ( z 2 , k ) sn ( z 3 , k ) k 2 k 2 cn ( z , k ) cn ( z 1 , k ) cn ( z 2 , k ) cn ( z 3 , k ) + 1 k 2 dn ( z , k ) dn ( z 1 , k ) dn ( z 2 , k ) dn ( z 3 , k ) ,
where z , z 1 , z 2 , z 3 are real, and sn , cn , dn are the Jacobian elliptic functions (§22.2). …
29.8.6 y = 1 k dn ( z , k ) dn ( z 1 , k ) .
29.8.7 𝐸𝑐 ν 2 m + 1 ( z 1 , k 2 ) w 2 ( K ) + w 2 ( K ) w 2 ( 0 ) = k 2 sn ( z 1 , k ) K K sn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) d z ,
29.8.9 𝐸𝑠 ν 2 m + 2 ( z 1 , k 2 ) d w 2 ( z ) / d z | z = K d w 2 ( z ) / d z | z = K w 2 ( 0 ) = k 4 k sn ( z 1 , k ) cn ( z 1 , k ) K K sn ( z , k ) cn ( z , k ) d 2 𝖯 ν ( y ) d y 2 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) d z .