About the Project

Jacobi fraction (J-fraction)

AdvancedHelp

(0.003 seconds)

21—30 of 217 matching pages

21: 22.7 Landen Transformations
22.7.2 sn ( z , k ) = ( 1 + k 1 ) sn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
22.7.4 dn ( z , k ) = dn 2 ( z / ( 1 + k 1 ) , k 1 ) ( 1 k 1 ) 1 + k 1 dn 2 ( z / ( 1 + k 1 ) , k 1 ) .
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
22.7.8 dn ( z , k ) = ( 1 k 2 ) ( dn 2 ( z / ( 1 + k 2 ) , k 2 ) + k 2 ) k 2 2 dn ( z / ( 1 + k 2 ) , k 2 ) .
22: 18.14 Inequalities
Jacobi
Jacobi
Jacobi
Szegő–Szász Inequality
Jacobi
23: 27.9 Quadratic Characters
27.9.3 ( p | q ) ( q | p ) = ( 1 ) ( p 1 ) ( q 1 ) / 4 .
If an odd integer P has prime factorization P = r = 1 ν ( n ) p r a r , then the Jacobi symbol ( n | P ) is defined by ( n | P ) = r = 1 ν ( n ) ( n | p r ) a r , with ( n | 1 ) = 1 . The Jacobi symbol ( n | P ) is a Dirichlet character (mod P ). …
24: 22.2 Definitions
22.2.4 sn ( z , k ) = θ 3 ( 0 , q ) θ 2 ( 0 , q ) θ 1 ( ζ , q ) θ 4 ( ζ , q ) = 1 ns ( z , k ) ,
22.2.5 cn ( z , k ) = θ 4 ( 0 , q ) θ 2 ( 0 , q ) θ 2 ( ζ , q ) θ 4 ( ζ , q ) = 1 nc ( z , k ) ,
22.2.6 dn ( z , k ) = θ 4 ( 0 , q ) θ 3 ( 0 , q ) θ 3 ( ζ , q ) θ 4 ( ζ , q ) = 1 nd ( z , k ) ,
22.2.7 sd ( z , k ) = θ 3 2 ( 0 , q ) θ 2 ( 0 , q ) θ 4 ( 0 , q ) θ 1 ( ζ , q ) θ 3 ( ζ , q ) = 1 ds ( z , k ) ,
s s ( z , k ) = 1 . …
25: 18.6 Symmetry, Special Values, and Limits to Monomials
For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1. …
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
§18.6(ii) Limits to Monomials
18.6.2 lim α P n ( α , β ) ( x ) P n ( α , β ) ( 1 ) = ( 1 + x 2 ) n ,
18.6.3 lim β P n ( α , β ) ( x ) P n ( α , β ) ( 1 ) = ( 1 x 2 ) n ,
26: 20.15 Tables
This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by
20.15.1 sin α = θ 2 2 ( 0 , q ) / θ 3 2 ( 0 , q ) = k .
Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . Lawden (1989, pp. 270–279) tabulates θ j ( x , q ) , j = 1 , 2 , 3 , 4 , to 5D for x = 0 ( 1 ) 90 , q = 0.1 ( .1 ) 0.9 , and also q to 5D for k 2 = 0 ( .01 ) 1 . Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
27: 20.8 Watson’s Expansions
20.8.1 θ 2 ( 0 , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( z , q ) = 2 n = ( 1 ) n q n 2 e i 2 n z q n e i z + q n e i z .
28: 22.17 Moduli Outside the Interval [0,1]
22.17.1 p q ( z , k ) = p q ( z , k ) ,
22.17.2 sn ( z , 1 / k ) = k sn ( z / k , k ) ,
22.17.3 cn ( z , 1 / k ) = dn ( z / k , k ) ,
22.17.4 dn ( z , 1 / k ) = cn ( z / k , k ) .
22.17.7 cn ( z , i k ) = cd ( z / k 1 , k 1 ) ,
29: 18.4 Graphics
See accompanying text
Figure 18.4.1: Jacobi polynomials P n ( 1.5 , 0.5 ) ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
See accompanying text
Figure 18.4.2: Jacobi polynomials P n ( 1.25 , 0.75 ) ( x ) , n = 7 , 8 . This illustrates inequalities for extrema of a Jacobi polynomial; see (18.14.16). … Magnify
30: 22.15 Inverse Functions
are denoted respectively by
ξ = arcsn ( x , k ) ,
η = arccn ( x , k ) ,
ζ = arcdn ( x , k ) .
Equations (22.15.1) and (22.15.4), for arcsn ( x , k ) , are equivalent to (22.15.12) and also to …