About the Project

Jacobi’s

AdvancedHelp

(0.006 seconds)

21—30 of 112 matching pages

21: 20.2 Definitions and Periodic Properties
§20.2(i) Fourier Series
22: 20.15 Tables
Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
23: 20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.2 0 x s 1 ( θ 3 ( 0 | i x 2 ) 1 ) d x = π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
20.10.3 0 x s 1 ( 1 θ 4 ( 0 | i x 2 ) ) d x = ( 1 2 1 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 0 .
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .
24: 22.14 Integrals
22.14.16 0 K ( k ) ln ( sn ( t , k ) ) d t = π 4 K ( k ) 1 2 K ( k ) ln k ,
22.14.17 0 K ( k ) ln ( cn ( t , k ) ) d t = π 4 K ( k ) + 1 2 K ( k ) ln ( k / k ) ,
25: 29.2 Differential Equations
29.2.5 ϕ = 1 2 π am ( z , k ) .
26: 18.19 Hahn Class: Definitions
The Askey scheme extends the three families of classical OP’s (Jacobi, Laguerre and Hermite) with eight further families of OP’s for which the role of the differentiation operator d d x in the case of the classical OP’s is played by a suitable difference operator. …
27: 18.16 Zeros
§18.16(ii) Jacobi
Let θ n , m = θ n , m ( α , β ) , m = 1 , 2 , , n , denote the zeros of P n ( α , β ) ( cos θ ) as function of θ with … Then …
Asymptotic Behavior
Jacobi
28: Bibliography B
  • J. M. Borwein and P. B. Borwein (1991) A cubic counterpart of Jacobis identity and the AGM. Trans. Amer. Math. Soc. 323 (2), pp. 691–701.
  • 29: 29.14 Orthogonality
    29.14.3 w ( s , t ) = sn 2 ( K + i t , k ) sn 2 ( s , k ) .
    30: 20.8 Watson’s Expansions
    §20.8 Watson’s Expansions
    20.8.1 θ 2 ( 0 , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( z , q ) = 2 n = ( 1 ) n q n 2 e i 2 n z q n e i z + q n e i z .