About the Project

Jacobi%20nome

AdvancedHelp

(0.003 seconds)

1—10 of 215 matching pages

1: 22.16 Related Functions
§22.16(i) Jacobi’s Amplitude ( am ) Function
§22.16(ii) Jacobi’s Epsilon Function
Integral Representations
where ξ = x / θ 3 2 ( 0 , q ) . …
§22.16(iii) Jacobi’s Zeta Function
2: 18.3 Definitions
§18.3 Definitions
The classical OP’s comprise the Jacobi, Laguerre and Hermite polynomials. … This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For finite power series of the Jacobi, ultraspherical, Laguerre, and Hermite polynomials, see §18.5(iii) (in powers of x 1 for Jacobi polynomials, in powers of x for the other cases). …
Jacobi on Other Intervals
3: 20.7 Identities
20.7.10 θ 1 ( 2 z , q ) = 2 θ 1 ( z , q ) θ 2 ( z , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) .
§20.7(iv) Reduction Formulas for Products
See Lawden (1989, pp. 19–20). …
§20.7(ix) Addendum to 20.7(iv) Reduction Formulas for Products
20.7.34 θ 1 ( z , q 2 ) θ 3 ( z , q 2 ) θ 1 ( z , i q ) = θ 2 ( z , q 2 ) θ 4 ( z , q 2 ) θ 2 ( z , i q ) = i 1 / 4 θ 2 ( 0 , q 2 ) θ 4 ( 0 , q 2 ) 2 .
4: 22.2 Definitions
§22.2 Definitions
The nome q is given in terms of the modulus k by …
22.2.4 sn ( z , k ) = θ 3 ( 0 , q ) θ 2 ( 0 , q ) θ 1 ( ζ , q ) θ 4 ( ζ , q ) = 1 ns ( z , k ) ,
22.2.7 sd ( z , k ) = θ 3 2 ( 0 , q ) θ 2 ( 0 , q ) θ 4 ( 0 , q ) θ 1 ( ζ , q ) θ 3 ( ζ , q ) = 1 ds ( z , k ) ,
s s ( z , k ) = 1 . …
5: 20.11 Generalizations and Analogs
This is Jacobi’s inversion problem of §20.9(ii). … Each provides an extension of Jacobi’s inversion problem. … For m = 1 , 2 , 3 , 4 , n = 1 , 2 , 3 , 4 , and m n , define twelve combined theta functions φ m , n ( z , q ) by …
20.11.9 φ m , n ( z , q ) = φ m , 1 ( z , q ) φ 1 , n ( z , q ) = 1 φ n , m ( z , q ) = φ m , 1 ( z , q ) φ n , 1 ( z , q ) = φ 1 , n ( z , q ) φ 1 , m ( z , q ) .
6: 20.4 Values at z = 0
20.4.1 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) = θ 3 ( 0 , q ) = θ 4 ( 0 , q ) = 0 ,
Jacobi’s Identity
20.4.6 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) θ 3 ( 0 , q ) θ 4 ( 0 , q ) .
20.4.7 θ 1 ′′ ( 0 , q ) = θ 2 ′′′ ( 0 , q ) = θ 3 ′′′ ( 0 , q ) = θ 4 ′′′ ( 0 , q ) = 0 .
20.4.9 θ 2 ′′ ( 0 , q ) θ 2 ( 0 , q ) = 1 8 n = 1 q 2 n ( 1 + q 2 n ) 2 ,
7: 22.21 Tables
§22.21 Tables
Curtis (1964b) tabulates sn ( m K / n , k ) , cn ( m K / n , k ) , dn ( m K / n , k ) for n = 2 ( 1 ) 15 , m = 1 ( 1 ) n 1 , and q (not k ) = 0 ( .005 ) 0.35 to 20D. Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
8: 22.1 Special Notation
x , y real variables.
q nome. 0 q < 1 except in §22.17; see also §20.1.
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . … The notation sn ( z , k ) , cn ( z , k ) , dn ( z , k ) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
9: 22.11 Fourier and Hyperbolic Series
Throughout this section q and ζ are defined as in §22.2. If q exp ( 2 | ζ | ) < 1 , then … Next, if q exp ( | ζ | ) < 1 , then … Similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) follow immediately from (22.6.1). … Again, similar expansions for cn 2 ( z , k ) and dn 2 ( z , k ) may be derived via (22.6.1). …
10: 20.8 Watson’s Expansions
20.8.1 θ 2 ( 0 , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( z , q ) = 2 n = ( 1 ) n q n 2 e i 2 n z q n e i z + q n e i z .