…
►The main functions treated in this chapter are the Bessel functions
,
;
Hankel functions
,
; modified Bessel functions
,
; spherical Bessel functions
,
,
,
; modified spherical Bessel functions
,
,
; Kelvin functions
,
,
,
.
…
►Abramowitz and Stegun (1964):
,
,
,
, for
,
,
,
, respectively, when
.
►Jeffreys and Jeffreys (1956):
for
,
for
,
for
.
…
►For older notations see
British Association for the Advancement of Science (1937, pp. xix–xx) and
Watson (1944, Chapters 1–3).
§10.4 Connection Formulas
►Other solutions of (
10.2.1) include
,
,
, and
.
…
►
►
…
►
…
§10.11 Analytic Continuation
…
►
10.11.3
…
►
10.11.7
►
10.11.8
…
►
…
…
►
Bessel Functions of the Third Kind (Hankel Functions)
►These solutions of (
10.2.1) are denoted by
and
, and their defining properties are given by
…
►The principal branches of
and
are two-valued and discontinuous on the cut
.
…
►
Branch Conventions
…
…
►
10.47.5
…
►
and
are the
spherical Bessel
functions of the first and second kinds, respectively;
and
are the
spherical Bessel functions of the
third kind.
…
►Many properties of
,
,
,
,
,
, and
follow straightforwardly from the above definitions and results given in preceding sections of this chapter.
For example,
,
,
,
,
,
, and
are all entire functions of
.
…
►
10.47.15
…
…
►
10.52.2
…
►
►
…
…
►
►
…
►
Confluent Hypergeometric Functions
…
►
10.16.6
…
►
10.16.8
…
§10.7 Limiting Forms
…
►
10.7.2
…
►For
and
when
combine (
10.4.6) and (
10.7.7).
For
and
when
and
combine (
10.4.3), (
10.7.3), and (
10.7.6).
…
►For the corresponding results for
and
see (
10.2.5) and (
10.2.6).