About the Project
NIST

Hamiltonians

AdvancedHelp

(0.001 seconds)

5 matching pages

1: 29.19 Physical Applications
§29.19(i) Lamé Functions
Brack et al. (2001) shows that Lamé functions occur at bifurcations in chaotic Hamiltonian systems. …
2: 32.6 Hamiltonian Structure
§32.6 Hamiltonian Structure
The Hamiltonian for P I  is … The Hamiltonian for P II  is … The Hamiltonian for P III  (§32.2(iii)) is …
3: 36.13 Kelvin’s Ship-Wave Pattern
The wake is a caustic of the “rays” defined by the dispersion relation (“Hamiltonian”) giving the frequency ω as a function of wavevector k : …
4: Bibliography B
  • T. Bountis, H. Segur, and F. Vivaldi (1982) Integrable Hamiltonian systems and the Painlevé property. Phys. Rev. A (3) 25 (3), pp. 1257–1264.
  • M. Brack, M. Mehta, and K. Tanaka (2001) Occurrence of periodic Lamé functions at bifurcations in chaotic Hamiltonian systems. J. Phys. A 34 (40), pp. 8199–8220.
  • 5: Bibliography
  • J. V. Armitage (1989) The Riemann Hypothesis and the Hamiltonian of a Quantum Mechanical System. In Number Theory and Dynamical Systems (York, 1987), M. M. Dodson and J. A. G. Vickers (Eds.), London Math. Soc. Lecture Note Ser., Vol. 134, pp. 153–172.