About the Project

Genocchi%20numbers

AdvancedHelp

(0.001 seconds)

11—20 of 274 matching pages

11: Peter L. Walker
Walker’s published work has been mainly in real and complex analysis, with excursions into analytic number theory and geometry, the latter in collaboration with Professor Mowaffaq Hajja of the University of Jordan. …
  • 12: 20 Theta Functions
    Chapter 20 Theta Functions
    13: 24.2 Definitions and Generating Functions
    §24.2 Definitions and Generating Functions
    §24.2(i) Bernoulli Numbers and Polynomials
    §24.2(ii) Euler Numbers and Polynomials
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    14: Tom M. Apostol
    Apostol was born on August 20, 1923. … He was internationally known for his textbooks on calculus, analysis, and analytic number theory, which have been translated into five languages, and for creating Project MATHEMATICS!, a series of video programs that bring mathematics to life with computer animation, live action, music, and special effects. … In 1998, the Mathematical Association of America (MAA) awarded him the annual Trevor Evans Award, presented to authors of an exceptional article that is accessible to undergraduates, for his piece entitled “What Is the Most Surprising Result in Mathematics?” (Answer: the prime number theorem). …
  • 15: 6.16 Mathematical Applications
    §6.16(ii) Number-Theoretic Significance of li ( x )
    If we assume Riemann’s hypothesis that all nonreal zeros of ζ ( s ) have real part of 1 2 25.10(i)), then
    6.16.5 li ( x ) π ( x ) = O ( x ln x ) , x ,
    where π ( x ) is the number of primes less than or equal to x . …
    See accompanying text
    Figure 6.16.2: The logarithmic integral li ( x ) , together with vertical bars indicating the value of π ( x ) for x = 10 , 20 , , 1000 . Magnify
    16: 26.9 Integer Partitions: Restricted Number and Part Size
    §26.9 Integer Partitions: Restricted Number and Part Size
    p k ( n ) denotes the number of partitions of n into at most k parts. See Table 26.9.1. … It follows that p k ( n ) also equals the number of partitions of n into parts that are less than or equal to k . …
    17: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    ( n n 1 , n 2 , , n k ) is the number of ways of placing n = n 1 + n 2 + + n k distinct objects into k labeled boxes so that there are n j objects in the j th box. It is also the number of k -dimensional lattice paths from ( 0 , 0 , , 0 ) to ( n 1 , n 2 , , n k ) . … M 2 is the number of permutations of { 1 , 2 , , n } with a 1 cycles of length 1, a 2 cycles of length 2, , and a n cycles of length n :
    26.4.7 M 2 = n ! 1 a 1 ( a 1 ! )  2 a 2 ( a 2 ! ) n a n ( a n ! ) .
    M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n : …
    18: 26.10 Integer Partitions: Other Restrictions
    p ( 𝒟 , n ) denotes the number of partitions of n into distinct parts. p m ( 𝒟 , n ) denotes the number of partitions of n into at most m distinct parts. p ( 𝒟 k , n ) denotes the number of partitions of n into parts with difference at least k . … p ( 𝒪 , n ) denotes the number of partitions of n into odd parts. p ( S , n ) denotes the number of partitions of n into parts taken from the set S . …
    19: 26.2 Basic Definitions
    The total number of partitions of n is denoted by p ( n ) . …
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    3 3 20 627 37 21637
    20: 26.11 Integer Partitions: Compositions
    c ( n ) denotes the number of compositions of n , and c m ( n ) is the number of compositions into exactly m parts. c ( T , n ) is the number of compositions of n with no 1’s, where again T = { 2 , 3 , 4 , } . …
    26.11.1 c ( 0 ) = c ( T , 0 ) = 1 .
    The Fibonacci numbers are determined recursively by … Additional information on Fibonacci numbers can be found in Rosen et al. (2000, pp. 140–145).