About the Project

Gaussian

AdvancedHelp

(0.001 seconds)

21—30 of 34 matching pages

21: Bibliography S
  • R. P. Sagar (1991a) A Gaussian quadrature for the calculation of generalized Fermi-Dirac integrals. Comput. Phys. Comm. 66 (2-3), pp. 271–275.
  • I. Shavitt and M. Karplus (1965) Gaussian-transform method for molecular integrals. I. Formulation for energy integrals. J. Chem. Phys. 43 (2), pp. 398–414.
  • I. Shavitt (1963) The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics. In Methods in Computational Physics: Advances in Research and Applications, B. Alder, S. Fernbach, and M. Rotenberg (Eds.), Vol. 2, pp. 1–45.
  • A. H. Stroud and D. Secrest (1966) Gaussian Quadrature Formulas. Prentice-Hall Inc., Englewood Cliffs, N.J..
  • 22: Bibliography G
  • W. Gautschi (1983) How and how not to check Gaussian quadrature formulae. BIT 23 (2), pp. 209–216.
  • W. Gautschi (2002a) Computation of Bessel and Airy functions and of related Gaussian quadrature formulae. BIT 42 (1), pp. 110–118.
  • 23: 18.38 Mathematical Applications
    Classical OP’s play a fundamental role in Gaussian quadrature. … The basic ideas of Gaussian quadrature, and their extensions to non-classical weight functions, and the computation of the corresponding quadrature abscissas and weights, have led to discrete variable representations, or DVRs, of Sturm–Liouville and other differential operators. …
    24: Bibliography R
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • 25: Bibliography H
  • Y. P. Hsu (1993) Development of a Gaussian hypergeometric function code in complex domains. Internat. J. Modern Phys. C 4 (4), pp. 805–840.
  • 26: 18.39 Applications in the Physical Sciences
    For many applications the natural weight functions are non-classical, and thus the OP’s and the determination of the Gaussian quadrature points and weights represent a computational challenge. …
    Table 18.39.1: Typical Non-Classical Weight Functions Of Use In DVR Applicationsa
    Name of OP System w ( x ) [ a , b ] Notation Applications
    Half-Freud Gaussian exp ( ( x x 0 ) 2 ) [ 0 , ) G n ( x ) Fokker–Planck DVRe
    Full expressions for both A x i , l and B l ( x ) are given in Yamani and Reinhardt (1975) and it is seen that | A x i , l / B l ( x i ) | 2 = w i N / w CP ( x i ) where w i N is the Gaussian-Pollaczek quadrature weight at x = x i , and w CP ( x i ) is the Gaussian-Pollaczek weight function at the same quadrature abscissa. …
    27: 18.36 Miscellaneous Polynomials
    EOP’s are non-classical in that not only are certain polynomial orders missing, but, also, not all EOP polynomial zeros are within the integration range of their generating measure, and EOP-orthogonality properties do not allow development of Gaussian-type quadratures. …
    28: 26.10 Integer Partitions: Other Restrictions
    26.10.3 ( 1 x ) m , n = 0 p m ( k , 𝒟 , n ) x m q n = m = 0 k [ k m ] q q m ( m + 1 ) / 2 x m = j = 1 k ( 1 + x q j ) , | x | < 1 ,
    29: 18.27 q -Hahn Class
    18.27.4 y = 0 N Q n ( q y ) Q m ( q y ) [ N y ] q ( α q ; q ) y ( β q ; q ) N y ( α q ) y = h n δ n , m , n , m = 0 , 1 , , N ,
    18.27.4_1 h n = ( α q ) n N 1 α β q 2 n + 1 ( α β q n + 1 ; q ) N + 1 ( β q ; q ) n [ N n ] q ( α q ; q ) n .
    30: Bibliography B
  • M. V. Berry (1977) Focusing and twinkling: Critical exponents from catastrophes in non-Gaussian random short waves. J. Phys. A 10 (12), pp. 2061–2081.