About the Project

Gauss sum

AdvancedHelp

(0.003 seconds)

31—40 of 68 matching pages

31: 3.5 Quadrature
3.5.36 I ( f ) = k = 1 n w k f ( ζ k ) + E n ( f ) ,
3.5.41 g ( t ) = k = 1 n w k ζ k ζ k 2 + t 2 ,
32: 16.23 Mathematical Applications
In Janson et al. (1993) limiting distributions are discussed for the sparse connected components of these graphs, and the asymptotics of three F 2 2 functions are applied to compute the expected value of the excess. … The Bieberbach conjecture states that if n = 0 a n z n is a conformal map of the unit disk to any complex domain, then | a n | n | a 1 | . …
33: 13.31 Approximations
13.31.1 A n ( z ) = s = 0 n ( n ) s ( n + 1 ) s ( a ) s ( b ) s ( a + 1 ) s ( b + 1 ) s ( n ! ) 2 F 3 3 ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
34: 16.8 Differential Equations
16.8.9 ( k = 1 q + 1 Γ ( a k ) / k = 1 q Γ ( b k ) ) F q q + 1 ( a 1 , , a q + 1 b 1 , , b q ; z ) = j = 1 q + 1 ( z 0 z ) a j n = 0 Γ ( a j + n ) n ! ( k = 1 k j q + 1 Γ ( a k a j n ) / k = 1 q Γ ( b k a j n ) ) F q q + 1 ( a 1 a j n , , a q + 1 a j n b 1 a j n , , b q a j n ; z 0 ) ( z z 0 ) n .
35: 18.12 Generating Functions
18.12.2_5 F 1 2 ( γ , α + β + 1 γ α + 1 ; 1 R z 2 ) F 1 2 ( γ , α + β + 1 γ β + 1 ; 1 R + z 2 ) = n = 0 ( γ ) n ( α + β + 1 γ ) n ( α + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , R = 1 2 x z + z 2 , | z | < 1 ,
18.12.3 ( 1 + z ) α β 1 F 1 2 ( 1 2 ( α + β + 1 ) , 1 2 ( α + β + 2 ) β + 1 ; 2 ( x + 1 ) z ( 1 + z ) 2 ) = n = 0 ( α + β + 1 ) n ( β + 1 ) n P n ( α , β ) ( x ) z n , | z | < 1 ,
36: 35.8 Generalized Hypergeometric Functions of Matrix Argument
35.8.1 F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) = k = 0 1 k ! | κ | = k [ a 1 ] κ [ a p ] κ [ b 1 ] κ [ b q ] κ Z κ ( 𝐓 ) .
37: 16.16 Transformations of Variables
16.16.7 F 4 ( α , β ; γ , γ ; x ( 1 y ) , y ( 1 x ) ) = k = 0 ( α ) k ( β ) k ( α + β γ γ + 1 ) k ( γ ) k ( γ ) k k ! x k y k F 1 2 ( α + k , β + k γ + k ; x ) F 1 2 ( α + k , β + k γ + k ; y ) ;
38: 18.33 Polynomials Orthogonal on the Unit Circle
18.33.13 ϕ n ( z ) = = 0 n ( λ + 1 ) ( λ ) n ! ( n ) ! z = ( λ ) n n ! F 1 2 ( n , λ + 1 λ n + 1 ; z ) ,
39: 16.11 Asymptotic Expansions
16.11.10 F p p + 1 ( a 1 + r , , a k 1 + r , a k , , a p + 1 b 1 + r , , b k + r , b k + 1 , , b p ; z ) = n = 0 m 1 ( a 1 + r ) n ( a k 1 + r ) n ( a k ) n ( a p + 1 ) n ( b 1 + r ) n ( b k + r ) n ( b k + 1 ) n ( b p ) n z n n ! + O ( 1 r m ) ,
40: 15.4 Special Cases
F ( a , b ; a ; z ) = ( 1 z ) b ,
F ( a , b ; b ; z ) = ( 1 z ) a ,
Dougall’s Bilateral Sum