About the Project

Gauss%E2%80%93Legendre formula

AdvancedHelp

(0.003 seconds)

11—20 of 410 matching pages

11: 15.8 Transformations of Variable
The transformation formulas between two hypergeometric functions in Group 2, or two hypergeometric functions in Group 3, are the linear transformations (15.8.1). …
15.8.13 F ( a , b 2 b ; z ) = ( 1 1 2 z ) a F ( 1 2 a , 1 2 a + 1 2 b + 1 2 ; ( z 2 z ) 2 ) , | ph ( 1 z ) | < π ,
15.8.14 F ( a , b 2 b ; z ) = ( 1 z ) a / 2 F ( 1 2 a , b 1 2 a b + 1 2 ; z 2 4 z 4 ) , | ph ( 1 z ) | < π .
15.8.15 F ( a , b a b + 1 ; z ) = ( 1 + z ) a F ( 1 2 a , 1 2 a + 1 2 a b + 1 ; 4 z ( 1 + z ) 2 ) , | z | < 1 ,
15.8.16 F ( a , b a b + 1 ; z ) = ( 1 z ) a F ( 1 2 a , 1 2 a b + 1 2 a b + 1 ; 4 z ( 1 z ) 2 ) , | z | < 1 .
12: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8(iii) F 2 3 Case
Kummer Transformation
Pfaff–Saalschütz Formula
Thomae Transformation
Multidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. …
13: 15.9 Relations to Other Functions
Legendre
§15.9(iv) Associated Legendre Functions; Ferrers Functions
Any hypergeometric function for which a quadratic transformation exists can be expressed in terms of associated Legendre functions or Ferrers functions. … The following formulas apply with principal branches of the hypergeometric functions, associated Legendre functions, and fractional powers. …
14: 16.4 Argument Unity
The function F q q + 1 ( 𝐚 ; 𝐛 ; z ) is well-poised if … The function F q q + 1 with argument unity and general values of the parameters is discussed in Bühring (1992). … For generalizations involving F r + 2 r + 3 functions see Kim et al. (2013). … Balanced F 3 4 ( 1 ) series have transformation formulas and three-term relations. … Transformations for both balanced F 3 4 ( 1 ) and very well-poised F 6 7 ( 1 ) are included in Bailey (1964, pp. 56–63). …
15: 16.18 Special Cases
The F 1 1 and F 1 2 functions introduced in Chapters 13 and 15, as well as the more general F q p functions introduced in the present chapter, are all special cases of the Meijer G -function. …
16.18.1 F q p ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G p , q + 1 1 , p ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G q + 1 , p p , 1 ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
16: 31.7 Relations to Other Functions
§31.7(i) Reductions to the Gauss Hypergeometric Function
Other reductions of H to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = α β p . …
31.7.2 H ( 2 , α β ; α , β , γ , α + β 2 γ + 1 ; z ) = F 1 2 ( 1 2 α , 1 2 β ; γ ; 1 ( 1 z ) 2 ) ,
31.7.3 H ( 4 , α β ; α , β , 1 2 , 2 3 ( α + β ) ; z ) = F 1 2 ( 1 3 α , 1 3 β ; 1 2 ; 1 ( 1 z ) 2 ( 1 1 4 z ) ) ,
Similar specializations of formulas in §31.3(ii) yield solutions in the neighborhoods of the singularities ζ = K , K + i K , and i K , where K and K are related to k as in §19.2(ii).
17: 18.20 Hahn Class: Explicit Representations
§18.20(i) Rodrigues Formulas
18.20.6 K n ( x ; p , N ) = F 1 2 ( n , x N ; p 1 ) , n = 0 , 1 , , N .
18.20.7 M n ( x ; β , c ) = F 1 2 ( n , x β ; 1 c 1 ) .
18: 16.8 Differential Equations
the function w = F q p ( 𝐚 ; 𝐛 ; z ) satisfies the differential equation …
w 0 ( z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) ,
We have the connection formulaAnalytical continuation formulas for F q q + 1 ( 𝐚 ; 𝐛 ; z ) near z = 1 are given in Bühring (1987b) for the case q = 2 , and in Bühring (1992) for the general case. …
19: 20.11 Generalizations and Analogs
§20.11(i) Gauss Sum
For relatively prime integers m , n with n > 0 and m n even, the Gauss sum G ( m , n ) is defined by … … Similar identities can be constructed for F 1 2 ( 1 3 , 2 3 ; 1 ; k 2 ) , F 1 2 ( 1 4 , 3 4 ; 1 ; k 2 ) , and F 1 2 ( 1 6 , 5 6 ; 1 ; k 2 ) . …
20: 5.1 Special Notation
The notation Γ ( z ) is due to Legendre. Alternative notations for this function are: Π ( z 1 ) (Gauss) and ( z 1 ) ! . Alternative notations for the psi function are: Ψ ( z 1 ) (Gauss) Jahnke and Emde (1945); Ψ ( z ) Davis (1933); 𝖥 ( z 1 ) Pairman (1919). …