About the Project

Euler transformation

AdvancedHelp

(0.004 seconds)

41—50 of 93 matching pages

41: 18.25 Wilson Class: Definitions
Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) . …
42: 10.46 Generalized and Incomplete Bessel Functions; Mittag-Leffler Function
10.46.1 ϕ ( ρ , β ; z ) = k = 0 z k k ! Γ ( ρ k + β ) , ρ > 1 .
The Laplace transform of ϕ ( ρ , β ; z ) can be expressed in terms of the Mittag-Leffler function:
10.46.3 E a , b ( z ) = k = 0 z k Γ ( a k + b ) , a > 0 .
43: 15.8 Transformations of Variable
15.8.28 2 z Γ ( 1 2 ) Γ ( a + b 1 2 ) Γ ( a 1 2 ) Γ ( b 1 2 ) F ( a , b ; 3 2 ; z ) = F ( 2 a 1 , 2 b 1 ; a + b 1 2 ; 1 2 1 2 z ) F ( 2 a 1 , 2 b 1 ; a + b 1 2 ; 1 2 + 1 2 z ) , | ph z | < π , | ph ( 1 z ) | < π .
44: 35.8 Generalized Hypergeometric Functions of Matrix Argument
Kummer Transformation
35.8.6 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 1 a 1 ) Γ m ( b 1 a 2 ) Γ m ( b 1 ) Γ m ( b 1 a 1 a 2 ) Γ m ( b 1 a 3 ) Γ m ( b 1 a 1 a 2 a 3 ) Γ m ( b 1 a 1 a 3 ) Γ m ( b 1 a 2 a 3 ) .
Thomae Transformation
Laplace Transform
Euler Integral
45: 31.7 Relations to Other Functions
31.7.1 F 1 2 ( α , β ; γ ; z ) = H ( 1 , α β ; α , β , γ , δ ; z ) = H ( 0 , 0 ; α , β , γ , α + β + 1 γ ; z ) = H ( a , a α β ; α , β , γ , α + β + 1 γ ; z ) .
They are analogous to quadratic and cubic hypergeometric transformations (§§15.8(iii)15.8(v)). … Joyce (1994) gives a reduction in which the independent variable is transformed not polynomially or rationally, but algebraically. …
γ = δ = ϵ = 1 2 ,
The solutions (31.3.1) and (31.3.5) transform into even and odd solutions of Lamé’s equation, respectively. …
46: 30.14 Wave Equation in Oblate Spheroidal Coordinates
The wave equation (30.13.7), transformed to oblate spheroidal coordinates ( ξ , η , ϕ ) , admits solutions of the form (30.13.8), where w 1 satisfies the differential equation …and w 2 , w 3 satisfy (30.13.10) and (30.13.11), respectively, with γ 2 = κ 2 c 2 0 and separation constants λ and μ 2 . Equation (30.14.7) can be transformed to equation (30.2.1) by the substitution z = ± i ξ . … Then λ = λ n m ( γ 2 ) for some n = m , m + 1 , m + 2 , , and the solution of (30.13.10) is given by (30.13.13). … The eigenvalues are given by c 2 κ 2 = γ 2 , where γ 2 is determined from the condition …
47: 17.12 Bailey Pairs
Bailey Transform
17.12.1 n = 0 α n γ n = n = 0 β n δ n ,
γ n = j = n δ j u j n v j + n .
48: 2.6 Distributional Methods
§2.6(ii) Stieltjes Transform
The Stieltjes transform of f ( t ) is defined by … f ( z ) being the Mellin transform of f ( t ) or its analytic continuation (§2.5(ii)). … Corresponding results for the generalized Stieltjes transformwhere f ( z ) is the Mellin transform of f or its analytic continuation. …
49: Bibliography S
  • J. L. Schiff (1999) The Laplace Transform: Theory and Applications. Undergraduate Texts in Mathematics, Springer-Verlag, New York.
  • J. D. Secada (1999) Numerical evaluation of the Hankel transform. Comput. Phys. Comm. 116 (2-3), pp. 278–294.
  • D. Shanks (1955) Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, pp. 1–42.
  • O. A. Sharafeddin, H. F. Bowen, D. J. Kouri, and D. K. Hoffman (1992) Numerical evaluation of spherical Bessel transforms via fast Fourier transforms. J. Comput. Phys. 100 (2), pp. 294–296.
  • N. T. Shawagfeh (1992) The Laplace transforms of products of Airy functions. Dirāsāt Ser. B Pure Appl. Sci. 19 (2), pp. 7–11.
  • 50: Bibliography
  • M. J. Ablowitz and H. Segur (1981) Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, Vol. 4, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • G. E. Andrews, I. P. Goulden, and D. M. Jackson (1986) Shanks’ convergence acceleration transform, Padé approximants and partitions. J. Combin. Theory Ser. A 43 (1), pp. 70–84.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.